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Introduction
 Aerosol indirect effects: influence of increasing 

cloud condensation nucleus (CCN) concentrations
 1st : Smaller droplets, higher albedo
 2nd: Precipitation inhibition, extended cloud lifetimes

 Cloud microphysical and radiative properties
 Droplet size: effective radius (Re)
 Related to cloud optical depth () and albedo (A)

 Droplet activation: CCN ability, dynamics
 Aerosol physicochemical properties; updraft velocity

 Key climate system process, uncertainty
 Requirement for studies in Arctic

Aerosol indirect effects in liquid clouds 
(Credit: NASA)



Page 3 – April 26, 2011

National Research Council of Canada (NRC) Convair-580

Approach
 Indirect and Semi-Direct Aerosol 

Campaign (ISDAC)
 Barrow, Alaska – April 2008

 Predominantly liquid clouds
 April 8, 26, 27 - clean conditions; 

‘golden’ cases
 April 19,20 - biomass burning (BB); 

polluted conditions

 Part 1: Cloud microphysical and 
radiative properties
 Vertical profiles through cloud in 

clean (30 profiles) and polluted (12 
profiles) conditions
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National Research Council of Canada (NRC) Convair-580

Approach
 Indirect and Semi-Direct Aerosol 

Campaign (ISDAC)
 Barrow, Alaska – April 2008

 Predominantly liquid clouds
 April 8, 26, 27 - clean conditions; 

‘golden’ cases
 April 19,20 - biomass burning (BB); 

polluted conditions

 Part 2: Droplet activation
 Horizontal flight legs in- (droplets) 

and below-cloud (aerosols)
 Droplet closure analysis for clean 

and polluted cases
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Aircraft instrumentation

Below – cloud aerosol measurements

In-cloud measurements

 Cloud droplet number concentration (Nd)

 Cloud Droplet Probe (CDP; 2 to 50 µm)

 Forward – Scattering Spectrometer Probe         
(FSSP-100; size range ~ 3 to 45 µm)

 Vertical velocity
 Rosemount 858 gust probe

 Aerosol particle number concentration (Na)
 Passive Cavity Aerosol Spectrometer Probe                 

(PCASP-100X; size range ~ 0.1 to 3 µm)

 FSSP-300 (Size range ~ 0.3 to 20 µm)

 Size-distributed particle concentration, composition
 Single-particle mass spectrometer (SPLAT II)

Canister-mounted 
FSSP probes (top) 
and view of SPLAT 
II from Convair-580 
interior (right)
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Part 1: cloud microphysical and 
radiative properties

Analysis
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Comparison: clean and polluted cases

LWP [g m-2]

N
a

[c
m

-3
]

Parameter Clean Polluted

Na, cm-3 147 ± 41 756 ± 132

Nd, cm-3 136 ± 31 304 ± 81

Activated 
fraction

0.96 0.41

T, °C -12.9 ± 1.1 -7.5 ± 1.1

LWC, g m-3 0.07 ± 0.02 0.16 ± 0.11

Hc, m 180 ± 43 296 ± 64

LWP, g m-2 13.4 ± 6.1 61.9 ± 66.8

Re, µm 5.4 ± 0.7 5.7 ± 1.2

τ 3.60 ± 0.30 14.13 ± 13.64

A 0.34 ± 0.08 0.55 ± 0.25

Average properties and standard deviations for all cases
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First indirect effect

τ

Peng et al.  
(2002)

CLEAN

POLLUTED
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First indirect effect

τ

 Focus on range of 
comparable LWP
 LWP < 50 g m-2

 Steeper τ – LWP
relationship for 
polluted points

 Implies presence of 
more numerous, 
smaller droplets

 Reflected in Re
 Clean: 5.4 ± 0.7 µm

 Polluted: 4.8 ± 1.0 µm
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Second indirect effect
 Correlation between higher Na and higher 

LWP in-cloud – polluted cases

 Enhanced LWP prior to precipitation onset in 
polluted environments (L’Ecuyer et al., 2009)
 Clouds more vertically-developed

 Assess precipitation formation in terms of Re
 Threshold value ~ 10 – 14 µm (e.g. 

Gerber, 1996; Hudson and Yum, 2002)

 Polluted cases – higher Nd keeps droplet 
sizes sufficiently small to inhibit drizzle 
formation by collision-coalescence

 Clean cases – lower LWC (colder conditions) 
limits droplet growth to sizes below drizzle 
threshold

Polluted case: April 20 (flight 26)
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Second indirect effect
 Correlation between higher Na and higher 

LWP in-cloud – polluted cases

 Enhanced LWP prior to precipitation onset in 
polluted environments (L’Ecuyer et al., 2009)
 Clouds more vertically-developed

 Assess precipitation formation in terms of Re
 Threshold value ~ 10 – 14 µm (e.g. 

Gerber, 1996; Hudson and Yum, 2002)

 Polluted cases – higher Nd keeps droplet  
sizes sufficiently small to inhibit drizzle 
formation by collision-coalescence

 Clean cases – lower LWC (colder conditions) 
limits droplet growth to sizes below drizzle 
threshold

Clean case: April 27 (flight 31)



Page 12 – April 26, 2011

Analysis

Part 2: droplet activation
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Aerosol physicochemical properties

Sea salt

Sea salt

BB

Sulfate/BB

Sulfate/Organics

Organics/Sulfate

Organics

Organics

Normalized to   
Na = 1 cm-3

 Aerosol particle size distribution and 
bulk composition below-cloud

Clean case: April 27 (ISDAC flight 31)

 Mode diameter ~ 0.20 µm

 Predominantly organics

 Mixing with sulphate, BB
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Aerosol physicochemical properties

Normalized to   
Na = 1 cm-3

 Aerosol particle size distribution and 
bulk composition below-cloud

Sulfate/BB/Organics

Sulfate/Organics

Sulfate/BB

Sulfate/BB

Sulfate/BB

Sulfate/BB/Organics

Organics

Organics

Organics

Soot/Sulfate

Sea salt

BB

Sulfate/BB

Polluted case: April 20 (ISDAC flight 26)

 Mode diameter ~ 0.24 µm

 Predominantly BB components

 Mixing with sulphate, organics
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Droplet closure analysis
 Adiabatic parcel model simulations

 Updraft velocity: standard deviation 
of gust velocity PDF, σω (e.g. Peng 
et al., 2005; Fountoukis et al., 2007)

 Hygroscopicity parameter, κ (Petters 
and Kreidenweis, 2007)
 Internal / external mixtures

 Results: in polluted cases, activation 
more sensitive to updraft velocity
 Lower activated fraction

 Lower max. supersaturation 
 Activation limited to larger and/or 

more hygroscopic particles

 Implications for Re

Sea salt

Sea salt

BB

Sulfate/BB

Sulfate/Organics

Organics/Sulfate

Organics

Organics

Size-distributed aerosol particle composition from SPLAT II 
for clean case on April 27 (flight 31)

Sulfate/Organics

Sea salt

BB

Sulfate/BB

Organics

Organics
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Droplet closure analysis

Mixing 
state

Updraft velocity 
[cm s-1]

% Difference
Nd 

Internal   
(κ = 0.3)

(0.4 – 0.5) σω 4 %

External 0.5 σω 3 %

Mixing 
state

Updraft velocity 
[cm s-1]

% Difference
Nd 

Internal    
(κ = 0.3)

(0.6 – 1) σω 8 %

External (0.7 – 1) σω 13 -14 %

Clean case: April 27 2008

Polluted case: April 20 2008

 Adiabatic parcel model simulations

 Updraft velocity: standard deviation 
of gust velocity PDF, σω (e.g. Peng 
et al., 2005; Fountoukis et al., 2007)

 Hygroscopicity parameter, κ (Petters 
and Kreidenweis, 2007)
 Internal / external mixtures

 Results: in polluted cases, activation 
more sensitive to updraft velocity
 Lower activated fraction

 Lower max. supersaturation 
 Activation limited to larger and/or 

more hygroscopic particles

 Implications for Re
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Droplet closure analysis

Development of supersaturation in parcel model 
simulations for clean and polluted cases

 Adiabatic parcel model simulations

 Updraft velocity: standard deviation 
of gust velocity PDF, σω (e.g. Peng 
et al., 2005; Fountoukis et al., 2007)

 Hygroscopicity parameter, κ (Petters 
and Kreidenweis, 2007)
 Internal / external mixtures

 Results: in polluted cases, activation 
more sensitive to updraft velocity
 Lower activated fraction

 Lower max. supersaturation
 Activation limited to larger and/or 

more hygroscopic particles

 Implications for Re
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Summary
 Vertical profiles through (predominantly liquid-phase) Arctic clouds 

in clean and polluted conditions

 Polluted cases: higher Na, Nd, LWP, Re
 Roles of temperature, dynamics, aerosol physicochemical properties

 Some evidence of first indirect effect for LWP < 50 g m-2

 Evidence for precipitation suppression – second indirect effect
 Polluted cases: higher Nd limits droplet growth
 Clean cases: lower LWC limits droplet growth

 Droplet closure analysis
 Polluted cases more sensitive to updraft velocity
 Preferential activation of larger and/or more hygroscopic particles
 Future work: toward characteristic updraft velocities for activation in 

Arctic clouds
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