

Canada

Observations of aerosol effects on the microphysics and radiative properties of Arctic liquid-phase clouds

Michael Earle,¹ Peter Liu,¹ J. Water Strapp,¹ Alla Zelenyuk,² Dan Imre,³ Greg McFarquhar,⁴ Nicole Shantz,¹ W. Richard Leaitch,¹ Mikhail Ovchinnikov,² and Steve Ghan²

¹ Environment Canada, ² Pacific Northwest National Laboratory, ³ Imre Consulting, ⁴ University of Illinois

ASR Science Team Meeting San Antonio, TX March 30, 2011

Introduction

- Aerosol indirect effects: influence of increasing cloud condensation nucleus (CCN) concentrations
 - 1st: <u>Smaller droplets</u>, higher albedo
 - 2nd: <u>Precipitation inhibition</u>, extended cloud lifetimes
- Cloud microphysical and radiative properties
 - Droplet size: effective radius (Re)
 - Related to cloud optical depth (\$\vec{x}\$) and albedo (A)
- Droplet activation: CCN ability, dynamics
 - Aerosol physicochemical properties; updraft velocity
- Key climate system process, uncertainty
 - Requirement for studies in Arctic

Aerosol indirect effects in liquid clouds (Credit: NASA)

ent Environnement Canada Page 2 – April 26, 2011

Approach

National Research Council of Canada (NRC) Convair-580

- Indirect and Semi-Direct Aerosol Campaign (ISDAC)
 - Barrow, Alaska April 2008
- Predominantly liquid clouds
 - April 8, 26, 27 clean conditions;
 'golden' cases
 - April 19,20 biomass burning (BB); polluted conditions

- Part 1: Cloud microphysical and radiative properties
 - Vertical profiles through cloud in clean (30 profiles) and polluted (12 profiles) conditions

Page 3 – April 26, 2011

Approach

National Research Council of Canada (NRC) Convair-580

- Indirect and Semi-Direct Aerosol Campaign (ISDAC)
 - Barrow, Alaska April 2008
- Predominantly liquid clouds
 - April 8, 26, 27 clean conditions;
 'golden' cases
 - April 19,20 biomass burning (BB); polluted conditions

- Part 2: Droplet activation
 - Horizontal flight legs in- (droplets) and below-cloud (aerosols)
 - Droplet closure analysis for clean and polluted cases

Page 4 – April 26, 2011

Aircraft instrumentation

In-cloud measurements

- Cloud droplet number concentration $(N_{\rm d})$
 - Cloud Droplet Probe (CDP; 2 to 50 µm)
 - Forward Scattering Spectrometer Probe (FSSP-100; size range \sim 3 to 45 μ m)
- Vertical velocity
 - Rosemount 858 gust probe

Below – cloud aerosol measurements

- Aerosol particle number concentration (N_a)
 - Passive Cavity Aerosol Spectrometer Probe (PCASP-100X; size range ~ 0.1 to 3 μ m)
 - FSSP-300 (Size range ~ 0.3 to 20 µm)
- Size-distributed particle concentration, composition
 - Single-particle mass spectrometer (SPLAT II)

Canister-mounted FSSP probes (top) and view of SPLAT II from Convair-580 interior (right)

anada

Page 5 – April 26, 2011

Part 1: cloud microphysical and radiative properties

Environment Environnement Canada Canada Page 6 – April 26, 2011

Comparison: clean and polluted cases

Environnement

Canada

Environment Canada

Parameter	Clean	Polluted
N _a , cm ⁻³	147 ± 41	756 ± 132
N _d , cm⁻³	136 ± 31	304 ± 81
Activated fraction	0.96	0.41
<i>T</i> , °C	-12.9 ± 1.1	-7.5 ± 1.1
<i>LWC</i> , g m ⁻³	0.07 ± 0.02	0.16 ± 0.11
H _c , m	180 ± 43	296 ± 64
<i>LWP</i> , g m ⁻²	13.4 ± 6.1	61.9 ± 66.8
Re, µm	5.4 ± 0.7	5.7 ± 1.2
т	3.60 ± 0.30	14.13 ± 13.64
А	0.34 ± 0.08	0.55 ± 0.25

Average properties and standard deviations for all cases

Page 7 – April 26, 2011

First indirect effect

Environnement

Canada

Environment Canada

Page 8 – April 26, 2011

First indirect effect

- Focus on range of comparable LWP
 LWP < 50 g m⁻²
- Steeper *τ LWP* relationship for polluted points
- Implies presence of more numerous, smaller droplets
- Reflected in Re
 - Clean: 5.4 ± 0.7 µm
 - Polluted: 4.8 ± 1.0 µm

Environment Environnement Canada Canada Page 9 – April 26, 2011

Second indirect effect

- Correlation between higher N_a and higher LWP in-cloud – polluted cases
- Enhanced LWP prior to precipitation onset in polluted environments (L'Ecuyer et al., 2009)
 - Clouds more vertically-developed
- Assess precipitation formation in terms of *Re*
 - Threshold value ~ 10 14 µm (e.g. Gerber, 1996; Hudson and Yum, 2002)
- Polluted cases higher N_d keeps droplet sizes sufficiently small to inhibit drizzle formation by collision-coalescence
- Clean cases lower LWC (colder conditions) limits droplet growth to sizes below drizzle threshold

Page 10 – April 26, 2011

Second indirect effect

- Correlation between higher N_a and higher LWP in-cloud – polluted cases
- Enhanced LWP prior to precipitation onset in polluted environments (L'Ecuyer et al., 2009)
 - Clouds more vertically-developed
- Assess precipitation formation in terms of *Re*
 - Threshold value ~ 10 14 µm (e.g. Gerber, 1996; Hudson and Yum, 2002)
- Polluted cases higher N_d keeps droplet sizes sufficiently small to inhibit drizzle formation by collision-coalescence
- Clean cases lower LWC (colder conditions) limits droplet growth to sizes below drizzle threshold

Part 2: droplet activation

Environment Environnement Canada Canada Page 12 – April 26, 2011

Aerosol physicochemical properties

Page 13 – April 26, 2011

Aerosol physicochemical properties

Page 14 – April 26, 2011

Droplet closure analysis

- Adiabatic parcel model simulations
- Updraft velocity: standard deviation of gust velocity PDF, σ_{ω} (e.g. Peng et al., 2005; Fountoukis et al., 2007)
- Hygroscopicity parameter, κ (Petters and Kreidenweis, 2007)
 - Internal / external mixtures
- Results: in polluted cases, activation more sensitive to updraft velocity
 - Lower activated fraction
- Lower max. supersaturation
 - Activation limited to larger and/or more hygroscopic particles
- Implications for Re

Size-distributed aerosol particle composition from SPLAT II for clean case on April 27 (flight 31)

Page 15 - April 26, 2011

Droplet closure analysis

- Adiabatic parcel model simulations
- Updraft velocity: standard deviation of gust velocity PDF, σ_ω (e.g. Peng et al., 2005; Fountoukis et al., 2007)
- Hygroscopicity parameter, κ (Petters and Kreidenweis, 2007)
 - Internal / external mixtures
- Results: in polluted cases, activation more sensitive to updraft velocity
 - Lower activated fraction
- Lower max. supersaturation
 - Activation limited to larger and/or more hygroscopic particles
- Implications for Re

Clean case: April 27 2008

Mixing state	Updraft velocity [cm s ⁻¹]	% Difference <i>N</i> d
Internal $(\kappa = 0.3)$	(0.6 – 1) σ _ω	8 %
External	$(0.7-1) \sigma_{\omega}$	13 -14 %

Polluted case: April 20 2008

Mixing state	Updraft velocity [cm s ⁻¹]	% Difference <i>N</i> d
Internal $(\kappa = 0.3)$	$(0.4 - 0.5) \sigma_{\omega}$	4 %
External	$0.5 \sigma_{\omega}$	3 %

Page 16 – April 26, 2011

Droplet closure analysis

- Adiabatic parcel model simulations
- Updraft velocity: standard deviation of gust velocity PDF, σ_{ω} (e.g. Peng et al., 2005; Fountoukis et al., 2007)
- Hygroscopicity parameter, κ (Petters and Kreidenweis, 2007)
 - Internal / external mixtures
- Results: in polluted cases, activation more sensitive to updraft velocity
 - Lower activated fraction
- Lower max. supersaturation
 - Activation limited to larger and/or more hygroscopic particles
- Implications for Re

Development of supersaturation in parcel model simulations for clean and polluted cases

Page 17 - April 26, 2011

Summary

- Vertical profiles through (predominantly liquid-phase) Arctic clouds in clean and polluted conditions
- Polluted cases: higher N_a, N_d, LWP, Re
 - Roles of temperature, dynamics, aerosol physicochemical properties
- Some evidence of first indirect effect for LWP < 50 g m⁻²
- Evidence for precipitation suppression second indirect effect
 - Polluted cases: higher N_d limits droplet growth
 - Clean cases: lower *LWC* limits droplet growth
- Droplet closure analysis
 - Polluted cases more sensitive to updraft velocity
 - Preferential activation of larger and/or more hygroscopic particles
 - Future work: toward characteristic updraft velocities for activation in Arctic clouds

Page 18 – April 26, 2011

Acknowledgements

- Project: US Department of Energy (ARM Program) in collaboration with Environment Canada, National Research Council of Canada, and various other universities and research institutions
- Analysis: This work was supported by the Office of Science (BER), US Department of Energy (DOE), Grant No. DE-FG02-09ER64768
- Collaborators, instrument PIs, support staff

