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that resolve the turbulent dynamics of stratocumulus show that the
evaporation of drizzle just below the cloud base can destabilize the
subcloud layer and enhance the mixing of moisture into the cloud,
thus increasing cloudiness73. Related effects are evident in simula-
tions and observations of shallow cumulus, for which studies suggest
that an increase in the aerosol increases droplet surface area and,
hence, the rate of droplet evaporation as clouds mix with subsatu-
rated environments. Increasing the rate of evaporation reduces
cloudiness74,75.

The tendency of precipitation to reduce the growth (or cloud-top
entrainment) rate of the stratocumulus-topped boundary layer on
the one hand, and to enhance subcloud mixing on the other, can
produce surprising results. Reduced cloud-top entrainment at night
(due to precipitation)maintains a shallower,moister boundary layer,
and weak precipitation during the day serves to keep the cloud layer
strongly coupled to the surface. The net result is that less aerosol
promotes more cloud, not less, in contradiction to what would have
been expected had cloud dynamics been neglected76,77. Processes such
as these are probably responsible for satellite observations that run
counter to conventional wisdom78,79.

The idea that precipitation may enhance cloudiness is familiar to
students of deep convection. In environments with vertical shear of
the horizontal wind, it is well understood that the longevity of cloud
systems is intimately tied to the development of precipitation and the
pools of cold air that it produces80. Recent field work suggests that for
shallow convection over the ocean, cloud activity also organizes
along the outflow of cold air associated with showers from previous
convection, which suggests that here, too, precipitation creates
clouds32,81. Finally, for weakly precipitating clouds, larger drops have
more thermal inertia and thus linger in subsaturated environments,
leading to effectively more cloud, not less, in the presence of precip-
itation61,82.

Radiative processes, through their ability to change the large-scale
thermodynamic environment in which clouds form, may also act to
buffer lifetime effects. Because cloud-active aerosol tends to correlate
with absorbing aerosol, clouds that form in layers of increased aerosol
loading may be suppressed through radiative heating (stabilization)
of the cloud layer83,84. Perhaps even more effective is that both
enhanced scattering and absorption by the aerosol increase the total
extinction, thereby acting to cool the surface, further stabilizing the
layer and reducing cloudiness85. Here again a mechanism emerges
whereby an increase in aerosol amount may reduce, rather than
enhance, cloudiness, hence reinforcing the concept of a well-buffered
system.

This is not to say that lifetime effects are entirely without merit.
Pockets of open cells (Fig. 2) provide dramatic support for the con-
ventional wisdom that precipitation reduces cloud amount13. Rather,
our argument is that the sensitivity of clouds and precipitation to
changes in the aerosol is, on average, weaker than implied by simple
arguments and is regime or state dependent. This capacity of the
system to respond differentially to change in the aerosol buffers the
global system, by endowing it with the ability to offset positive res-
ponses within some regimes with negative responses in others.

Why it makes sense to keep searching
The possibility of significant, but regime- (or regionally) specific86,87,
responses is one reason to intensify research efforts—even if the
diversity of responses and regimes makes it likely that lifetime effects
are negligible (or at least not discernible given current approaches)
on global scales. Another compelling reason for intensifying our
efforts to understand lifetime effects is because doing so can help
solve the cloud problem, namely that of relating the statistics of cloud
fields to their meteorological environment. This is a vital issue.

Because clouds and precipitation and the effect that the aerosol has
on them are almost certainly regime dependent, future work must
identify how the trace of such interactions depends on the state of the
system, and improve the representation of such cloud regimes in
models. Absent some new organizing principle, this means that the
most fruitful approach is to work through the issues regime by
regime. It remains to be seen just how many regimes carry the cloud,
or aerosol–cloud–precipitation, signal and its imprint on the global
scale.

Given our present understanding, certain cloud regimes can
already be identified as worthy of closer scrutiny, irrespective of
whether the interest is in clouds and precipitation or the effects of
the aerosol thereon. These include shallow maritime clouds (includ-
ing trade-wind cumulus and stratocumulus), tropical deep convec-
tion over land and stratiform cloud regimes in the polar regions.
Trade-wind cumulus are crucial because they prevail over the global
ocean, are at the centre of the initial lifetime hypothesis and are
known to play an important role both in the current climate and in
estimates of climate change. Stratocumulus are important because
observations suggest that they carry a pronounced signature of
changing aerosol, and because they have been identified by geo-
engineering proposals88 as a possible pathway through which one
could regulate the planetary albedo. Tropical deep convection over
land should be considered both because of its role in the hydrological
cycle and because preliminary work suggests a pronounced suscep-
tibility of rainfall to aerosol infusions (which, on the regime scale, can
be enormous). Stratiform clouds in the arctic warrant attention
because theymaymediate interactions over a part of the earth system
that appears to be unusually sensitive to the changing climate.

Shifting our emphasis to regime-centred studies also offers metho-
dological advantages. Because of their limited spatial scale, studies of
particular regimes are well suited to fine-scale models, which are
capable of resolving (rather than parameterizing) the multitude of
interactions ranging from the cloud microscale to the cloud macro-
scale. To the extent that fine-scale models identify (and observations
support) a robust sensitivity of a cloud regime to the aerosol, this
sensitivity can be incorporated into the parameterizations used by
large-scale models. Then, rather than attempting to mediate among
fine (or subgrid) scale processes for which information is always
lacking, large-scale models can focus on aspects of the problem to
which they are well suited, that is, exploring the interplay between a
robustly parameterized effect of the aerosol on clouds and the nature
of the large- (or resolved-) scale circulation in which it is embedded.

Localization of the problem also makes it more straightforward to
augment and enrich current17 and future space-based measure-
ments89,90 The most effective way of doing so would be through the
deployment of arrays of ground-based remote sensors that can both
vertically and temporally resolve the aerosol, clouds, precipitation and
the meteorological state. Finally, regime-centred studies also offer the
opportunity to take advantage of novel experimental strategies. One
possibility is through the use of natural experiments, accidental or
otherwise (for example large-scale biomass burnings or aerosol
infusions from ships). Other possibilities include the development
of new observational platforms, for instance high-altitude airships
capable of deploying heavy payloads (comprising, perhaps, active
and hyperspectral remote sensors such as those now only deployed
on polar-orbiting satellites) to geostationary positions in the lower
stratosphere for periods of months91.
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Figure 4 | The deepening effect. The local inhibition of precipitation helps
precondition the environment for deeper convection, which then rainsmore.
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Deep convective clouds 

•  Aerosol-­‐induced	
  convec.ve	
  “invigora.on”	
  
–  Satellite	
  studies	
  see	
  higher	
  cloud	
  tops	
  in	
  polluted	
  
condi.ons	
  

– Many	
  models	
  show	
  it	
  too;	
  when,	
  why?	
  
–  But	
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  long	
  .mescales?	
  	
  

•  Does	
  the	
  nature	
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  precipita.on	
  change?	
  
–  Spa.al	
  distribu.on,	
  intensity	
  

•  What	
  can	
  we	
  learn	
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  wet	
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Links to Other Programs 

•  Aerosol-­‐Cloud-­‐Precipita.on-­‐Climate	
  (ACPC)	
  
group	
  (IGAC-­‐GEWEX-­‐iLEAPS)	
  
– Amazon	
  emerging	
  as	
  a	
  focus	
  area	
  for	
  large	
  field	
  
campaign	
  

– SAMBBA	
  (Fall	
  2012)	
  BAE-­‐146	
  airborne	
  campaign	
  


