The relationship of large and small scales in a convecting atmosphere

Christian Jakob1, Laura Davies1, Vickal Kumar1,2, and Peter May2

1Monash University, Melbourne, Australia
2CACWR, Bureau of Meteorology, Melbourne, Australia
Motivation

- Task of any parametrization is to relate large and small scales to each other
- When early convection parametrizations were built, data on both scales was sparse
- Yet, almost all existing convection parametrizations are still based on ideas formulated then
- It is timely to revisit convection parametrizations with 21st century data
Starting point

- Need many samples of concurrent large and small scale observations
- ASR/ARM data provides a perfect background to do this
- Use three years of Darwin data 6-hourly to
 - build a large-scale data set using the variational analysis
 - build a small-scale data set using C-band radar data
Some questions

- Which variables show the strongest large to small scale relationships?
 - Is mass-flux a good variable for convection schemes?
- How stochastic is the problem?
 - Do we need fully stochastic convection schemes?
- How much memory is in the large-scale alone?
 - Do we need fully prognostic convection schemes?
Some basic relationships

- Total rainfall
- Convective rainfall

Factors:
- Large-scale q convergence
- CAPE

Tuesday, 29 March 2011
Some basic relationships

Relationship to large-scale q convergence

Domain-mean convective rainfall Convective area fraction Number of convective cells
Learning more about intensity

\[I_c = \frac{\bar{R}_c}{f_c} = \frac{\bar{R}_c}{NA_i} \times A_0 \]

- **\(R_c \) - domain mean convective rainfall
- **\(f_c \) - convective area fraction
- **\(A_i \) - mean convective cell size
- **\(N \) - Number of convective cells

Tuesday, 29 March 2011
How stochastic is convection?

- Both mean and standard deviation increase with large-scale “forcing”.
- However, the signal to noise ratio decreases.
- Hence, overall convective behaviour becomes more “predictable” as the “forcing” increases.
- This is contrary to some implementations of “stochastic” convection.
Back to 1974 - The convective moisture budget

How is moisture supply distributed among rainfall and moistening of the grid-box?

Column Moistening (Δq) vs Moisture input (M_t)

Prec/Δq vs M_t

Colours indicate mean rainfall (grey=0; red=large)

Tuesday, 29 March 2011
Back to 1974 - The convective moisture budget

How is moisture supply distributed among rainfall and moistening of the grid-box?

\[P = (1 - b)M_t \]

\[
\frac{1}{g} \int_0^{p_0} \frac{\partial q}{\partial t} dp = \Delta_i q = bM_t
\]

\[
M_t = -\frac{1}{g} \int_0^{p_0} \nabla \cdot \bar{v} q \cdot dp + E_s
\]

\[b = \frac{\Delta_i q}{\Delta_i q + P} \]

Kuo parameter \(b \) vs \(M_t \)

Colours indicate mean rainfall (grey=0; red=large)

Tuesday, 29 March 2011
Conclusions and next steps

* ASR/ARM data provides a great opportunity to revisit key ideas in convection parametrization

* More observational analysis is required - add another location

* Run “forced” CRM for three years and compare the results with the observations

* Run large-domain “free” CRM and compare results with the observations

* Define key variables and relationships as design specs for a new parametrization
Thank you!