Examination of Entrainment-Mixing Mechanisms Using a Combined Approach

Chunsong Lu¹, ², Yangang Liu¹, Shengjie Niu²

1. Brookhaven National Laboratory (BNL), New York, USA 11973
2. Nanjing University of Information Science and Technology (NUIST), Jiangsu, China 210044

Thanks to Prof. Michael Poellot and Mr. Andrea Neumann at the University of North Dakota for providing the data.
Motivation

- Entrainment-mixing processes are important but poorly represented in models.

- Entrainment-mixing processes affect Z-LWC relations used in radar retrieval of LWC.

- Entrainment-mixing processes affect evaluation of aerosol indirect effects.

- Entrainment-mixing mechanisms are examined using a combination of microphysics, dynamics and thermodynamics in stratocumulus clouds.
Data

- **Cloud:**
 - Five stratocumulus cases.

- **Time:**
 - The March 2000 cloud Intensive Observation Period (IOP).

- **Site:**
 - Southern Great Plains (SGP), USA.

- **Aircraft:**
 - Citation research aircraft of the University of North Dakota.

- **Instruments:**
 - *Cloud droplet spectra* --- Forward Scattering Spectrometer Probe (FSSP);
 - *Drizzle drop spectra* --- Optical array probe 1D-C;
 - *Particle Image* --- Cloud Particle Imager (CPI);
 - *Air temperature* --- Rosemount Model 102.
Classification of Entrainment-Mixing Mechanisms

- **Homogeneous Entrainment-Mixing**: Just Saturated Air by Droplet Evaporation
 - Entrained Drier Air
 - Unmixed Cloudy Air

- **Inhomogeneous Entrainment-Mixing**: With Subsequent Ascent
 - Entrained Drier Air
 - Unmixed Cloudy Air

- **Extreme Inhomogeneous Entrainment-Mixing**: Just Saturated Air by Droplet Evaporation
 - Entrained Drier Air
 - Unmixed Cloudy Air

Examples:
- Baker and Latham, 1979
- Baker et al., 1980
- Yum, 1998

Diagram showing droplet size and number concentration relationships.
Method One: Microphysics

---Some Examples

Inhomogeneous mixing with subsequent ascent
Leg 1 -- 18 March 2000

Extreme inhomogeneous mixing
Leg 2 -- 19 March 2000

Homogeneous mixing
Leg 2 -- 17 March 2000
Method One: Microphysics

--- Flight Summary

Different colors of Leg numbers:

Blue: extreme inhomogeneous mixing (DOMINANT);
Red: inhomogeneous mixing with subsequent ascent;
Black: homogeneous mixing.

Leg Length > 12 km

03 March 2000
17 March 2000
18 March 2000
19 March 2000
21 March 2000
Method Two: Dynamics

---Damkoehler Number

- **Damkoehler number:**

 \[Da = \frac{\tau_{\text{mix}}}{\tau_{\text{react}}} \]

- **\(\tau_{\text{mix}} \):** the time needed for complete turbulent homogenization of an entrained parcel of size \(L \) (Baker et al., 1984):

 \[\tau_{\text{mix}} \sim (L^2 / \xi)^{1/3} \]

 \(\xi \): dissipation rate

- **\(\tau_{\text{react}} \):** the time needed for droplets to evaporate in a subsaturated blob or a blob to be saturated (Lehmann et al. 2009):

 \[
 \begin{align*}
 \frac{dr_m}{dt} &= A \cdot \frac{s}{r_m} \\
 \frac{ds}{dt} &= -B \cdot s
 \end{align*}
 \]

 \(r_m \): mean radius

 \(s \): supersaturation
Method Two: Dynamics

--- Transition Scale Number (1)

Lehmann et al. (2009) defined transition length (L^*) by setting $Da = 1$.

\[
Da = \frac{\tau_{mix}}{\tau_{react}} = 1
\]

\[
\tau_{mix} \sim \left(\frac{L^2}{\xi}\right)^{1/3}
\]

\[
L^* = \frac{\xi^{1/2} \tau_{react}^{3/2}}{\eta}
\]

We define transition scale number (N_L) as:

\[
N_L = \frac{L^*}{\eta} = \frac{\xi^{1/2} \tau_{react}^{3/2}}{\eta}
\]

η: Kolmogorov scale

A larger value of N_L indicates a higher probability of homogeneous process.
Different entrainment-mixing mechanisms tend to occur simultaneously and one dominant mechanism can not rule out the occurrence of the others.

Method Two: Dynamics

---Transition Scale Number(2)
Method Three: Thermodynamics

---Filament Structure

Valid for all legs

Why?

Filament structure is partially responsible for the observed dominance of the extreme inhomogeneous mechanism (Haman et al., 2007).
Microphysics:
- The inhomogeneous entrainment-mixing process occurs much more frequently than the homogeneous counterpart;
- Most cases of the inhomogeneous entrainment-mixing process are close to the extreme scenario.

Dynamics: A new dimensionless number, scale number, is introduced, with a larger value corresponding to a higher degree of homogeneous entrainment-mixing.

Thermodynamics: Sampling average of filament structures also contributes to the dominance of inhomogeneous entrainment-mixing mechanism.
Back up
Filament Structure

Cloud-Free

Sample One

Sample Two

Droplet Concentration

Droplet Size

Extreme inhomogeneous mixing

Leg 2 -- 19 March 2000
Scale-Dependence of Entrainment-Mixing Mechanism

\[\frac{D_v}{D_{va}} \]

Each Point: every mixing event

\[\frac{N}{N_a} \]

\[\frac{D_v}{D_{va}} \]

Burnet and Brenguier (2007)

Each Point: average of 50 successive mixing events
Method One: Microphysics (Summary)

Different colors of Leg numbers:

- Blue: extreme inhomogeneous entrainment-mixing (DOMINANT);
- Red: inhomogeneous entrainment-mixing with subsequent ascent;
- Black: homogeneous entrainment-mixing.
Method Two: Dynamics

---Transition Scale Number(3)
Aircraft Trajectory and Data

Period: March 2000;
Site: Southern Great Plains (SGP);
Instruments: PMS probes (FSSP, 1dc, 2dc, 2dp);
Cloud type: Stratocumulus
The combined microphysical-dynamical-thermodynamic analysis sheds new light on developing parameterization of entrainment-mixing processes and their microphysical and radiative effects in large scale models.