Assessing the importance of aerosol indirect effects on arctic boundary clouds using ISDAC data

Greg McFarquhar et al.
University of Illinois
Dept. of Atmospheric Sciences

ISDAC Breakout, ASR Annual Meeting, 29 March 2011

Outline

- Three indirect effects proposed for mixed-phase arctic clouds
 - 1. Glaciation indirect effect:
 - ◆ IN increase → Ni increase
 - 2. Riming indirect effect
 - CCN increase → NI increase → DI decrease
 → less riming growth → IWC decrease
 - 3. Cold 2nd indirect effect
 - CCN increase → Nl increase → Dl decrease
 → less ice crystal formation → Ni decrease

Methodology

Data from 20 bulk & size-resolved probes combined to give value added product

Methodology

Data from 20 bulk & size-resolved probes combined to give value added product

Methodology

Data from 20 bulk & size-resolved probes combined to give value added product

Glaciation indirect effect?

Data show little evidence of such an effect

Liquid indirect effect

Liquid concentrations and drop sizes well correlated with PCASP concentration below cloud

Other indirect effects?

Some correlation of IWC/Ni with PCASP below cloud concentration

Other indirect effects?

IWC has stronger correlation with PCASP Dvm

Cold 2nd indirect effect

Ni also more strongly correlated with Dvm

Compare CFDC IN & PCASP aerosol data below liquid cloud with IWC/Ni in cloud and below cloud to assess importance of different effects