Assessing the importance of aerosol indirect effects on arctic boundary clouds using ISDAC data

Greg McFarquhar et al.
University of Illinois
Dept. of Atmospheric Sciences

ISDAC Breakout, ASR Annual Meeting, 29 March 2011
Three indirect effects proposed for mixed-phase arctic clouds

1. Glaciation indirect effect:
 - IN increase \rightarrow Ni increase

2. Riming indirect effect
 - CCN increase \rightarrow Ni increase \rightarrow Di decrease \rightarrow less riming growth \rightarrow IWC decrease

3. Cold 2nd indirect effect
 - CCN increase \rightarrow Ni increase \rightarrow Di decrease \rightarrow less ice crystal formation \rightarrow Ni decrease
Methodology

Data from 20 bulk & size-resolved probes combined to give value added product
Methodology

Data from 20 bulk & size-resolved probes combined to give value added product
Methodology

Data from 20 bulk & size-resolved probes combined to give value added product

Fit: \(IWC_{SD} = 1.0168 \times IWC_{DeepCone} - 4.8477 \times 10^{-4} \), \(R^2 = 0.80094 \)
Glaciation indirect effect?

Data show little evidence of such an effect.

\[
R^2 = -0.13994 \quad SS_w \in (-10\%, 0\%)
\]

\[
R^2 = -0.35242 \quad SS_w \in (0\%, -10\%)
\]

Data show little evidence of such an effect.
Liquid indirect effect

Liquid concentrations and drop sizes well correlated with PCASP concentration below cloud
Other indirect effects?

Some correlation of IWC/Ni with PCASP below cloud concentration
Other indirect effects?

IWC has stronger correlation with PCASP D_{vm}
Cold 2nd indirect effect

Ni also more strongly correlated with Dvm
April 8 flight 2 – single layer stratus – roughly homogeneous meteorology

- Dmmi = 4 mm
- 300 cm$^{-3}$
- 350 cm$^{-3}$
- 325 cm$^{-3}$
- 300 cm$^{-3}$
- 150 cm$^{-3}$
- 150 cm$^{-3}$
- 200 cm$^{-3}$
Smaller Ni matches with larger concentration of smaller aerosols -- & smaller liquid drops.
Larger liquid drops correlated with increased aerosol size & Ni.
Compare CFDC IN & PCASP aerosol data below liquid cloud with IWC/Ni in cloud and below cloud to assess importance of different effects.