Representing the Ice Fall Speed in Climate Models: Results from SPARTICUS

David Mitchell¹ and Subhashree Mishra¹,²
1. Desert Research Institute, Reno, NV
2. University of Nevada, Reno, NV
Global Climate Models (GCMs) are highly sensitive to the representation of clouds and their feedbacks. According to a study by Sanderson et al. (2008), the ice fall velocity (V_i) is the second most important factor affecting the global feedback parameter in GCMs.

In spite of its importance, V_i in climate models is highly uncertain due in part to its dependence on the ice particle size distribution (PSD), which has been plagued with measurement uncertainties from small ice particles produced by shattering. However, data processing techniques used in conjunction with new probes in recent field campaigns appear to have significantly reduced the artifact concentration of small ice particles.
Selected Case Studies

<table>
<thead>
<tr>
<th>Synoptic Cirrus (117 segments)</th>
<th>Anvil Cirrus (122 segments)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Jan 19th</td>
<td>- April 22nd</td>
</tr>
<tr>
<td>- Jan 20th</td>
<td>- April 28th</td>
</tr>
<tr>
<td>- March 23rd</td>
<td>- June 12th</td>
</tr>
<tr>
<td>- March 26th</td>
<td>- June 14th</td>
</tr>
<tr>
<td>- April 1st</td>
<td>- June 15th</td>
</tr>
<tr>
<td>- June 17th</td>
<td>- June 24th</td>
</tr>
</tbody>
</table>

Cloud segments are identified for each case by making sure that

- they contain no liquid water,
- they have good sampling statistics and utilize a good fraction of the data
- they are sampled under relatively steady microphysical conditions
Satellite Images Help Determine Cloud Type (Anvil/Synoptic Cirrus)

Source: P. Minnis (NASA Langley)
http://www.angler.larc.nasa.gov/cgi-bin/site/showdoc?mnemonic=ARM-SPARTICUS
General Approach

- The size resolved 2D-S measurements of number, projected area and mass concentration appear reasonable.
 - Ice artifacts from shattering greatly reduced
 - Good agreement between 2D-S and CVI IWC during TC4

This study uses 2D-S data from SPARTICUS, a recent field campaign sampling mid-latitude cirrus. The treatment of D_e (effective diameter) is general for liquid, mixed phase and ice clouds and is expressed as:

$$D_e = \frac{3}{2}(\frac{IWC}{\rho_iA_t})$$

V_i (ice particle fall speed) is calculated by using two different methods, namely the Mitchell-Heymsfield (2005) method (MH) and the Heymsfield-Westbrook (2010) method (HW). V_i is generally expressed as:

$$V_i = \alpha D^\beta$$

Applying this definition to 2DS measurements, D_e and V_m (the PSD mass weighted fall-speed) were expressed as:

$$V_m = \Sigma V_i(D) m(D) N(D) \Delta D / \Sigma m(D) N(D) \Delta D$$

$$D_e = \frac{3}{2} \Sigma m(D) N(D) \Delta D / (\rho_i \Sigma A(D) N(D) \Delta D)$$
Synoptic Cirrus PSDs from 2DS
Fall Speed Related To D_e Using:

\[V_{HW} = 0.004D_{eff}^2 + 0.191D_{eff} - 5.64 \]
\[R^2 = 0.992 \]

\[V_{MH} = 0.006D_{eff}^2 - 0.161D_{eff} + 5.034 \]
\[R^2 = 0.993 \]
Area Ratios of SPARTICUS Synoptic Cirrus

PSD Area Ratio for SPARTICUS

N = 60
Sparticus Synoptic Cirrus

Normalized Frequency

PSD Mean Area Ratio

0 0.25 0.5 0.75 1

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
Area Ratios From Other Field Campaigns

TC4 Anvil Cirrus
N = 25

TC4 Aged Anvil Cirrus
N = 23

In Situ Cirrus NAMMA & TC4
N = 12

Arctic (ISDAC) Cirrus
N = 162
SPARTICUS SYNOPTIC CIRRUS:
V_m vs. T and V_m vs. IWC

$v_H = 116.617 + 1.734T$
$R^2 = 0.7846$

$V_{HW} = 0.902 + 30.667 \log(IWC)$
$R^2 = 0.619$
SPARTICUS SYNOPTIC CIRRUS:
\(D_e \) vs. \(T \) and \(D_e \) vs. IWC
V_m And D_e Related To IWC And T

- Predicted V_m (HW) vs. Observed V_m
 - $V_m = 105.595 + 1.55T + 0.05$ IWC
 - $R^2 = 0.831$

- Predicted D_e vs. Observed D_e
 - $D_e = 160.27 + 1.8T + 0.04$ IWC
 - $R^2 = 0.769$
Model consistency achieved by predicting V_m from D_e.
THANK YOU!

INPUTS AND COMMENTS?