A General Framework for Predicting CCN Activity of Organic Molecules from Functional Group Data

Markus Petters1, Paul Ziemann2, Sonia Kreidenweis3, Kip Carrico3, Annelise Faulhaber2, Aiko Matsunaga2, Lorena Minambres4, Tony Prenni3, Sara Suda1, Ryan Sullivan3

1North Carolina State University
2University of California, Riverside
3Colorado State University
4University of Pais Vasco, Spain
Motivation: 0.4 W m$^{-2}$ in indirect forcing

How important is organic aerosol hygroscopicity to aerosol indirect forcing?

Xiaohong Liu1,3 and Jian Wang2

1 Atmospheric Science & Global Change Division, Pacific Northwest National Laboratory, 3200 Q Avenue, MSIN K9-24 Richland, WA 99352, USA
2 Atmospheric Sciences Division, Brookhaven National Laboratory, Upton, NY 11973, USA

E-mail: Xiaohong.Liu@pnl.gov and jian@bnl.gov

“The simulation results show that the uncertainty in organics aerosol hygroscopicity, based on current understanding and our model formulation, may lead to an uncertainty of about 0.4 W m$^{-2}$ This uncertainty is comparable to or even larger than those due to autoconversion parameterization and tuning parameters related to entrainment, drizzle and snow formation.”
Levels of representation of organic aerosol

<table>
<thead>
<tr>
<th>By mass/source</th>
<th>By age/oxidation state</th>
<th>By molecular structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>direct emissions</td>
<td>physical age, photochemical age</td>
<td>explicit speciation</td>
</tr>
<tr>
<td>product schemes</td>
<td>principle components HOA/OOA/LV-OOA ...</td>
<td>functional group composition</td>
</tr>
<tr>
<td>volatility basis set approach</td>
<td>O:C and H:C ratio</td>
<td>master chemical mechanism</td>
</tr>
<tr>
<td></td>
<td>explicit oxidation state</td>
<td></td>
</tr>
</tbody>
</table>
Can we predict the water uptake/CCN properties of a substance from molecular composition?

Hydrophobic and insoluble

Hydrophilic and water soluble
We can represent this molecule as

\[\nu = 115 \frac{cm^{-3}}{mol}, \ 6 \times (C), \ 5 \times (-OH), \ 1 \times (= O), \ 1 \times (CH_2) \]

molar volume, # carbon, #hydroxyl, #carbonyl, #CH_2

Our objective is to find a relationship for

CCN activity = function(molar volume, #carbons, sum[#moiety(i)])

Why do we need such a relationship?

<table>
<thead>
<tr>
<th>By mass/source</th>
<th>By age/oxidation state</th>
<th>By molecular structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>direct emissions</td>
<td>physical age, photochemical age</td>
<td>explicit speciation</td>
</tr>
<tr>
<td>product schemes</td>
<td>principle components</td>
<td>functional group composition</td>
</tr>
<tr>
<td>volatility basis set</td>
<td>O:C and H:C ratio</td>
<td>master chemical mechanism</td>
</tr>
<tr>
<td></td>
<td>explicit oxidation state</td>
<td></td>
</tr>
</tbody>
</table>
1. Parameterization of CCN activity example for SOA for monoterpene + O_3

$k=0.1$

(Prenni et al., 2007, JGR)
2. For sufficiently water soluble compounds, κ is controlled by molar volume.

There are a number of compounds with lower κ values that behave non-ideally because they are not sufficiently functionalized – Need to understand this part of the state space.

Upper limit κ is ~ 0.3.
Seek an equation that works also for less soluble compounds

\[\kappa = f(\text{size of molecule}) \times f(\text{functional groups}) \]

- Term between 0 and 1
- 1 for “soluble” compounds
- Account for different types of functional groups (e.g. “acid”, “nitrate”, “hydroxyl”...)
- Need experimental framework to constrain this term
3. Use model SOA systems to synthesize molecules with known moieties

Example system: linear 1-alkene + O_3 +

\[
\text{HOO}(\text{GO})\text{CH} \rightarrow (\text{CH}_2)_R \rightarrow \text{CH}_3
\]

- H_2O
- Methanol
- Propanol

oxidized tail with functionality reflecting the SCI reactant
Number of CH_2 groups depends on precursor chain length

(Tobias and Ziemann, ES&T, 2001)
3. Empirical relationship between # of CH$_x$ groups and the hygroscopicity parameter

\[
\frac{\Delta \ln \kappa}{\Delta n_{\text{CH}_x}} \sim -0.35 \pm 0.15
\]
3. Second example: synthesize molecules with different # of OH groups

2-methyl-1alkene + OH/NO$_x$

(Matsunaga et al., PNAS, 2010)

β-hydroxynitrates dihydroxynitrates trihydroxynitrates

Use offline HPLC-CCN technique to measure CCN activity of individual compounds: See poster *Hygroscopicity frequency distributions of secondary organic aerosols* by Sarah Suda
3. Empirical relationship between # of OH groups and the hygroscopicity parameter

Hygroscopicity parameter

\[\frac{\Delta \ln \kappa}{\Delta n_{OH}} \approx 0.35 \pm 0.15 \]

\(\beta \)-hydroxynitrates dihydroxynitrates trihydroxynitrates
4. The empirical relationships can be used to construct the following framework

\[\kappa = \kappa_{\text{Flory Huggins}} \exp(cn_e) \]

\[n_e = n_c - \sum \alpha_i n_i \]

- detrimental effect of CH\(_x\) on kappa
- number of effective CH\(_x\) groups (≥0)
- number of carbon atoms
- ability of functional group to negate CH\(_x\)
- number of that group type
4. Test of fidelity with current parameters against CCN data from pure compounds
Conclusions

• For sufficiently functionalized molecules Flory-Huggins theory presents a reasonable baseline.

• Developed a simple mathematical framework to compute kappa from
 – number of carbon atoms/molar volume
 – number of functional groups of type i
 – a functional group dependent interaction parameter

• Experiments with model SOA systems can be used to populate the parameter space of the relationship.