A General Framework for Predicting CCN Activity of Organic Molecules from Functional Group Data

Markus Petters¹, Paul Ziemann², Sonia Kreidenweis³, Kip Carrico³, Annelise Faulhaber², Aiko Matsunaga², Lorena Minambres⁴, Tony Prenni³, Sara Suda¹, Ryan Sullivan³

> ¹North Carolina State University ²University of California, Riverside ³Colorado State University ⁴Unversity of Pais Vasco, Spain

Motivation: 0.4 W m⁻² in indirect forcing

IOP PUBLISHING

Environ. Res. Lett. 5 (2010) 044010 (10pp)

ENVIRONMENTAL RESEARCH LETTERS

doi:10.1088/1748-9326/5/4/044010

How important is organic aerosol hygroscopicity to aerosol indirect forcing?

Xiaohong Liu 1,3 and Jian Wang 2

 ¹ Atmospheric Science & Global Change Division, Pacific Northwest National Laboratory, 3200 Q Avenue, MSIN K9-24 Richland, WA 99352, USA
² Atmospheric Sciences Division, Brookhaven National Laboratory, Upton, NY 11973, USA

E-mail: Xiaohong.Liu@pnl.gov and jian@bnl.gov

"The simulation results show that the uncertainty in organics aerosol hygroscopicity, based on current understanding and our model formulation, may lead to an uncertainty of about 0.4 W m⁻² This uncertainty is comparable to or even larger than those due to autoconversion parameterization and tuning parameters related to entrainment, drizzle and snow formation."

Levels of representation of organic aerosol

By mass/source	By age/oxidation state	By molecular structure
direct emissions	physical age, photochemical age	explicit speciation
product schemes	principle components HOA/OOA/LV-OOA	functional group composition
volatility basis set approach	O:C and H:C ratio	master chemical mechanism
	explicit oxidation state	

Increasing level of scientific understanding

Increasing complexity, increasing uncertainty

Can we predict the water uptake/CCN properties of a substance from molecular composition?

Hydrophobic and insoluble

$$v = 115 \frac{\text{cm}^{-3}}{\text{mol}}, 6 \times (C), 5 \times (-\text{OH}), 1 \times (= 0), 1 \times (\text{CH}_2)$$

molar volume, # carbon, #hydroxyl, #carbonyl, #CH₂

Our objective is to find a relationship for

CCN activity = function(molar volume, #carbons, sum[#moiety(i)])

Why do we need such a relationship?

By mass/source	By age/oxidation state	By molecular structure
direct emissions	physical age, photochemical age	explicit speciation
product schemes	principle components HOA/OOA/LV-OOA	functional group composition
volatility basis set approach	O:C and H:C ratio	master chemical mechanism
	explicit oxidation state	

1. Parameterization of CCN activity example for SOA for monoterpene + O₃

⁽Prenni et al., 2007, JGR)

2. For sufficiently water soluble compounds $OA \kappa$ is controlled by molar volume

(Petters et al., 2009, GRL)

Seek an equation that works also for less soluble compounds

- 1 for "soluble" compounds
- Account for different types of functional groups (e.g. "acid", "nitrate", "hydroxyl"...)
- Need experimental framework to constrain this term

3. Use model SOA systems to synthesize molecules with known moieties

Example system: linear 1-alkene + O_3 +

3. Empirical relationship between # of CH_x groups and the hygroscopicity parameter

3. Second example: synthesize molecules with different # of OH groups

Use offline HPLC-CCN technique to measure CCN activity of individual compounds: See poster *Hygroscopicity frequency distributions of secondary organic aerosols* by Sarah Suda

3. Empirical relationship between # of OH groups and the hygroscopicity parameter

β-hydroxynitrates dihydroxynitrates

trihydroxynitrates

4. The empirical relationships can be used to construct the following framework

4. Test of fidelity with current parameters against CCN data from pure compounds

Conclusions

- For sufficiently functionalized molecules Flory-Huggins theory presents a reasonable baseline
- Developed a simple mathematical framework to compute kappa from
 - number of carbon atoms/molar volume
 - number of functional groups of type i
 - a functional group dependent interaction parameter
- Experiments with model SOA systems can be used to populate the parameter space of the relationship