Old and New Paradigms for Aerosol-Cloud-Precipitation studies

Graham Feingold

NOAA Earth System Research Laboratory, Boulder, Colorado

Contributions from Ilan Koren, S.-S. Lee, Patrick Chuang, Hailong Wang, H. Morrison, G. deBoer, J. Harrington, M. Shupe, K. Sulia

DOE/ASR Science Team Meeting

March 13, 2012

A brief history of the world...

The outcome

- A series of aerosol indirect effects
 - 1st, 2nd.. nth
 - often poorly defined
 - misinterpreted
 - shoe-horned into climate models, often without regard to scale, aggregation

This Talk

- The Mesoscopic view
- Order
- Preferred Modes
- Robustness of Modes
- Transitions between Modes
- Simplified Equation Sets

Strongly coupled system: Aerosol-Cloud-Dynamics-Radiation-Land Surface

From DOE/ASR Science and Program Plan

- Complexity at a huge range of spatiotemporal scales
- Number of degrees of freedom of this system is staggering
- Important implications for climate

Mesoscopic Order

Microscopic = individual birds or grains of sand Mesoscopic = bird flock or sand dune

Don't need to model every bird or every grain of sand to obtain the emergent properties of the system

Order

• Cloud Size distributions follow power laws

Photo: Barbados (CIRPAS Twin Otter)

Landsat 30 m imagery

Cloud Size Distributions

See also Benner and Curry, 1998

Cloud Patterns

MODIS, MISR, GOES images

Preferred Modes

See also Bretherton et al. 2004; Stevens et al. 2005; Savic-Jovcic and Stevens 2008; Xue et al. 2008; Wang and Feingold 2009

Resilient Mixed Phase Arctic Stratus

Thin liquid water cloud

Clouds persist for days on end Why is this cloud system stable when ice is present??

Morrison, DeBoer, Feingold, Harrington, Shupe, Sulia, Nature Geo. 2011

Many complex interactions → system wide order

Morrison, DeBoer, Feingold, Harrington, Shupe, Sulia, Nature Geo. 2011

IN

Preferred States

A and B are resilient stable states

A = Radiatively clear B = Cloudy

See also Stramler et al. 2010

Morrison, DeBoer, Feingold, Harrington, Shupe, Sulia, Nature Geo. 2011

Transition between States

Fast processes: local interactions

Slow processes: broad meteorological environment

Fast processes "slave" system to the slow manifold

Transitions occur when changes to the largescale environment are significant

Support from LES (e.g., Solomon 2011)

Colored trajectories: transition between states Triangle = start; square = end

A = Radiatively clear B = Cloudy

Aerosol Influences

How resilient are the open and closed-cell states?

Resilience

Self-organising systems are resilient to change

 a certain amount of random perturbation may facilitate rather than hinder self-organization

- possible implications for geoengineering (Wang et al. 2011)

The counter example!

Goren and Rosenfeld, 2012

Goren and Rosenfeld, 2012

Aerosol influences in trade cumulus

Photo Jen Small RICO clouds

Robust features vs. Transients

RICO

ė

 τ for inversion adjustment: days

 τ for thermodynamic adjustment ~ 0.5 days

------ Clean (50 cm⁻³) ----- Polluted (250 cm⁻³)

Robust features vs. Transients

Robust features vs. Transients

"RICO Ensemble"

Many fields converge to a steady state

Rainrate

Lee, Feingold, Chuang, 2012

Even when the clean case is more active, the deepest clouds are associated with high aerosol

Influence on cloud optical depth

Only about half of the Twomey increase in albedo is realised

i.e., 1/2 x (250/50)^{1/3}

------ Clean (50 cm⁻³) ----- Polluted (250 cm⁻³)

Aerosol influences on deep convective clouds

Preferred modes?

TWP-ICE: Strongly forced: very weak aerosol influence on mean R

TWP-ICE: Invigoration?

Little to no influence of aerosol on cloud top height

Cloud top height elevation (> 1 km) for higher aerosol in less active period

SGP

Li et al., 2011 10 yrs ground-based data

For mixed-phase, convective clouds:
Higher cloud tops correlate with higher surface CN concentrations

Surface CN concentration

Atlantic ocean (tropics)

Koren et al. 2010

- Mixed-phase, convective clouds
- Higher cloud tops correlate with higher AOD
- Vertical velocity dominates
 AOD effect

Model results: Increase in rain amount with increasing aerosol for warm-base summertime Convection (weak shear) Li et al., 2011 SGP, 10 yrs ground based data

Higher frequency of heavier rain for high aerosol loading

TRMM rainrates:

- Reanalysis provides meteorology (updraft, RH)
- Meteorology dominates R
- R increases with increasing AOD
- Note: heavier TRMM rainrates, not total precip.

Simplified Equation Sets

Predator-Prey Model

Lotka-Volterra Equations (circa 1926)

Image courtesy of Wikipedia

4 parameters:

δ? ⊡

90 - -

40

Ω

 γ_{b}

Prey-Predator Cycles

Predator-Prey Model

Image courtesy of Wikipedia

Many possible predator-prey pairs:

Rain; Cloud (Koren and Feingold) Convection; Instability (Nober and Graf) Droplets; Supersaturation Ice; Water (Bergeron-Findeisin; U. Wacker)

Predator-Prey model for Convection

Liquid Water Path 150 ECHAM AGCM 120 -WP, g m⁻² % of clouds 90 FS 60 P-P 30 20 21 24 15 16 17 Time, UTC Clouds = Predators Instability = Prey

i=1, n $n_i = number of clouds of type i$ $F_i = "food supply" (instability)$ $K_{ij} = interaction matrix$

Cloud size distribution

Cloud radius, m

Nober and Graf 2005

ECHAM Single Column Model

Precipitation rate

SGP IOP 1997

Observations
P-P model

Darwin TWP-ICE 2005

Wagner and Graf 2010

Predator-Prey Model for Aerosol-Cloud-Precipitation

Vertical Profile of Radar reflectivity (a proxy for Rainrate) from N. Atlantic (Azores, Porto Santo, 1992; ASTEX)

Time

Data courtesy NOAA WPL Radar Group

Large Eddy Simulation of Aerosol-Cloud-Precipitation

Large Eddy Simulation: Solution to Navier-Stokes Eqns on 3-D grid (~ 200 x 200 x 200)

Anticlockwise loops in R; Cloud phase space

Rain = Predator Cloud = Prey

Balance Equations: average system state

Cloud Depth H

$$\frac{dH}{dt} = \frac{H_0 - H}{\tau_1} + \dot{H}_r(t - T)$$

Loss term due to rain

Rainrate R

 $R = \alpha H^3 N_d^{-1}$

Empirically and theoretically based

$$R(t) = \frac{\alpha H^3(t-T)}{N_d(t-T)}$$

Delay function (time for rain to develop)

Drop concentration N_d

$$\frac{dN_d}{dt} = \frac{N_0 - N_d}{\tau_2} + \dot{N}_d(t - T)$$

Loss term due to rain

Notes:

Source terms represent a range of forcings that result in exponential rise to H_0 or N_0 within a few τ

 N_d (or aerosol) modulates H-R interaction

Balance Equations

Cloud Depth H

$$\frac{dH}{dt} = \frac{H_0 - H}{\tau_1} + \dot{H}_r(t - T)$$

Rainrate R

$$R(t) = \frac{\alpha H^3(t-T)}{N_d(t-T)}$$

Drop concentration N_d

$$\frac{dN_d}{dt} = \frac{N_0 - N_d}{\tau_2} + \dot{N}_d(t - T)$$

Notes:

Five parameters:

Carrying Capacity: H_0 , N_0

Time constants: τ_1 , τ_2

Delay time: T

Aerosol protects cloud from rain

Steady State Solution to Cloud Depth H

 $\frac{dH}{dt} = \frac{H_0 - H}{\tau_1} + \dot{H}_r(t - T) = 0 \qquad \qquad H = \frac{(N_d^2 + 4\gamma\tau_1 N_d H_0)^{\frac{1}{2}} - N_d}{2\gamma\tau_1}$

Time-Dependent Steady State Solutions

$$\frac{dH}{dt} = \frac{H_0 - H}{\tau_1} + \dot{H}_r(t - T)$$
$$R(t) = \frac{\alpha H^3(t - T)}{N_d(t - T)}$$
$$\frac{dN_d}{dt} = \frac{N_0 - N_d}{\tau_2} + \dot{N}_d(t - T)$$

No Stable Solution Collapsed boundary layer

Oscillating Solutions: Steady State

Oscillating Solutions: No Steady State

7 day simulation

Stability

How stable are the stable states? How readily does the system transition from one state to another?

States A and B are stable and self-sustaining

Small perturbations strengthen the resilience of the state

Lorenz, 1963

$$\frac{dx}{dt} = \sigma(y - x)$$
$$\frac{dy}{dt} = x(\rho - z) - y$$
$$\frac{dz}{dt} = x(\rho - z) - y$$

 $\frac{dx}{dt} = xy - \beta dt$

The Parameterization Paradigm

- Empiricism used to represent physics Examples:
 - Autoconversion ~ LWC^a N^b
 - $dlnr_e/dlnN = -\alpha$
- Scale issues, averaging/aggregation issues
 - "scale-aware parameterizations"
 - E.g. Bennartz et al. (2011) for autoconversion/accretion

Self-organizing systems approach

- Coupled *simple* prognostic equations representing emergent properties of the system
 - E.g., cloud-precip cycles, bistability, robustness
 - Small number of free parameters, tuned to mimic system-wide behaviour in different conditions/regimes
- Slow manifolds (Bretherton et al. 2010)

$$dz_i/dt = w_e(z_i) - Dz_i$$

Balance equation for BL depth z_i

- Convective parameterizations
- "Org" parameter (Mapes)
- Lorenz (1960s)

$$\frac{dH}{dt} = \frac{H_0 - H}{\tau_1} + \dot{H}_r(t - T)$$
$$R(t) = \frac{\alpha H^3(t - T)}{N_d(t - T)}$$
$$\frac{dN_d}{dt} = \frac{N_0 - N_d}{\tau_2} + \dot{N}_d(t - T)$$

Prognostic predator-prey equations for cloud water (H), rainwater (R) and drop concentration (N)

Slow manifolds

Bretherton et al. 2010

Morrison et al., 2011

Final Thoughts

- Maintain the effort on the process level understanding
 - These are the local interactions that generate emergent behaviour
- Retain/refine the fundamental physics of the 1st, 2nd.... nth indirect effects (e.g. aerosol effects on N_d, collision-coalescence, etc..)
 - Discard these simple constructs when attempting to include these processes in large scale models
 - E.g., hardwiring of cloud lifetime to autoconversion parameterizations
- Develop the mesoscopic, systems view
 - Example: Predator-Prey model for convection or aerosol-cloud-precipitation, slow manifolds, etc..