Insights into possible cloud effects on aerosols from MODIS

Duli Chand, Minghuai Wang, Robert Wood Steve Ghan, Mikhail Ovchinnikov, Phil Rasch, Steve Miller, Brad Schichtel, Tom Moore

Method

- Use MODIS L2 aerosol product
 - Produced for 10x10 km² "scenes"
 - Cloudy pixels (0.5x0.5 km²) within scene are removed using MODIS cloud mask. Cloud cover reported for each "scene"
 - Aerosol properties (only τ used here) retrieved for remaining cloud-free pixels
- Bin retrievals by scene cloud fraction
 - For a given region/season, construct an enhancement as $\Delta\tau$

= $\tau_{CF.85} - \tau_{CF.15}$ where $\tau_{CF.X}$ is the mean AOD for scenes with cloud fraction of X

– Normalized enhancement $\varepsilon = (\tau_{CF.85} - \tau_{CF.15})/\tau_{CF.15}$

Absolute enhancement $\Delta \tau = \tau_{\text{CF.85}} - \tau_{\text{CF.15}}$

Strong seasonality, zonal asymmetry, larger in regions of high AOD

Relative enhancement $\varepsilon = (\tau_{CF.85} - \tau_{CF.15})/\tau_{CF.15}$

Zonal symmetry, not a function of mean AOD, no strong seasonality

Simple model linking hygroscopic aerosol growth to cloud cover through RH pdf

- Assume pdf of RH in a given region is Gaussian with fixed width
- Dry AOD fixed
- Cloud cover (CF) is determined from saturated fraction of pdf
- Clear sky RH distribution determined from unsaturated fraction of pdf
 - Use this to determine hygroscopic growth assuming aerosol growth factor of Kiehl et al. (2000)
- Since mean RH controls both CF and clear sky RH distribution, the enhancement of aerosol scattering is related to CF

Model and observed AOD enhancement

- Model results depend upon standard deviation of RH within MODIS scene
 - Estimated to be in range
 2-5% for 10 km scale
 using aircraft data from
 several campaigns
- General consistency between model and observations suggesting that hygroscopic growth likely explains a significant fraction of AOD enhancement in cloudy environments

Zonally-averaged obs and model

Latitudinal variation may be explained by distribution of high cloud cover which masks true enhancements

Conclusions

- Simple Gaussian model
- Hygroscopic growth likely responsible for significant fraction of AOD enhancement in clear regions in the vicinity of clouds

ASR Opportunities

- All measurements needed to tackle the hygroscopic growth problem are available in ARM
 - Cloud fraction from TSI
 - Aerosol extinction from HSRL
 - Humidity variability in clear skies from Raman lidar

Zonal dist

