Evaluation of Cloud Resolving Simulations
by WRF driven by ARM Continuous Forcing
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Motivation

e Large-eddy simulation (LES) and cloud-resolving models (CRM) have been
widely used to study a variety of atmospheric phenomena and
its parameterizations.

e Since the default functions of WRF’s function was not suited for this
purpose, we extended the capability of WRF for the CRM simulations.

The modified WRF (WRF-FASTER)
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e The framework have been validated for weakly-forced idealized simulations
(GCSS cases).

We test the simulation under strong large-scale forcing
in March 2000 IOP at SGP (FASTER warm-up case).



Large-Scale Forcing

e Large-scale forcing is represented as an additional source/sink term.

e There are three approaches commonly taken to implement the large-scale

forcing:
1. Advective forcing,
2. Relaxation, and
3. Combination of 1 and 2.
Advective forcing Relaxation
00 00 00 ©—0
— =—-V .V - W— (—) =
ot LS 0z ot R T
8qv 8qfv (aqv) . Qv — Qv
= -V -VQ,—W =
( ot )LS @ 0z 0t Jx T

Which approach fits our purpose? How the relaxation works...?
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Three 2D experiments

[ADV] [ADV+RLX(1;:3h)] [RLX(TZBh)}
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Three 2D experiments
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Cloud Fraction in ADV
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The ADV simulation produced smaller cloud fraction
than of the observed.



Cloud Fraction in ADV, RLX and ADV+RLX
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Relaxation increased cloud fraction.
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Time series of PW, LWP, and surface precipitation
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ADV overestimated surface precipitation,
while RLX and ADV+RLX underestimated it.



LS forcing averaged over the period
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LS forcing averaged over the period

Pressure [hPa]
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Strong relaxation
suppressed convection and
reduced precipitation.



ADV+RLX experiments with changing tau
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Summary & Next Steps

Using the WRF-FASTER, we examined the LS forcing strategies.

e The frontal clouds in March 2000 IOP at SGP simulated with advective
forcing produced more surface precipitation with less cloud fraction.

e The simulations with relaxation showed better agreement in cloud fraction.
However, relaxation stabilized the lower atmosphere, and reduced
precipitation.

e Relaxation would be able to produce better profile, but it may skip or
change process of interest.

Next steps
e Summer time local convection
e Longterm simulation with adv + weak relaxation
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