Entrainment in Cumulus Ensembles: Cumulus Parameterization versus Giga-LES

Steve Krueger and Ian Glenn University of Utah

AKIO ARAKAWA AND WAYNE HOWARD SCHUBERT

FIG. 1. A unit horizontal area at some level between cloud base and the highest cloud top. The taller clouds are shown penetrating this level and entraining environmental air. A cloud which has lost buoyancy is shown detraining cloud air into the environment.

A large-domain LES of deep convection

- Idealized GATE (tropical ocean) simulation with shear.
- Used a CSRM (SAM) with 2048 x 2048 x 256 (10⁹) grid points and 100-m grid size for a 24-h LES.

LES "visible image" 180 km x 180 km

Updraft Properties

Mass Flux Spectrum vs z

with MSE profiles for several fractional entrainment rates

Average Vertical Velocity in Cloudy Updrafts vs z and MSE

Average Cloud Condensate vs z and MSE

Average Precipitating Condensate vs z and MSE

Average Total Condensate vs z and MSE

Vertical velocity depends on entrainment and drag (loading).

Can we use Doppler radar retrievals of vertical velocity and condensate to back out (minimum) entrainment rate?

Environment Properties

MSE Histogram vs z

Cloud Condensate Spectrum vs z

Precipitating Condensate Spectrum vs z

Mass Flux Spectrum vs Moist Static Energy

with MSE profiles for several fractional entrainment rates

Mass Flux Spectrum vs Fractional Entrainment Rate

Summary

- The Giga-LES contains a spectrum of updrafts with different entrainment rates.
- Each updraft type has characteristic properties: updraft speed, cloud condenate, precipitating condensate, etc.
- Perhaps Doppler radar can be used to infer (minimum) entrainment rates.