Variability of Aerosol Properties and Mixing-layer Heights from Airborne High Spectral Resolution Lidar, Ground-based Measurements, and the WRF-Chem Model During CARES and CalNex

Chris Hostetler1, Amy Jo Scarino2, Michael Obland1, Richard Ferrare1, John Hair1, Sharon Burton1, Ray Rogers1, Carolyn Butler2, Jerome Fast3, Larry Berg3, Mikhail Pekour3, Will Shaw3, Rahul Zaveri3, Barry Lefer4, Anthony Cook1, David Harper1

1 NASA Langley Research Center, Hampton, VA, USA
2 Science Systems and Applications, Inc., Hampton, VA, USA
3 Pacific Northwest National Laboratory, Richland, WA, USA
4 University of Houston, Houston, TX, USA

DOE ASR Science Team Meeting
March 2012
CARES Deployment June 2010

- Sacramento, California
- June 3 -28
- 23 science flights (72.3 hours)
 - 19 with DOE G1
 - 1 with NOAA R/V Atlantis
 - 2 with NOAA P3
 - 6 with NOAA Twin Otter
 - 11 with MODIS and/or MISR satellite overpasses

CalNex Deployment May 2010

- Ontario, California
- May 13-25
- 8 science flights (28.5 hours)
 - 6 with CIRPAS Twin Otter
 - 2 with NOAA P-3
 - 6 with MODIS and/or MISR satellite overpasses

Instruments deployed for CalNex and CARES

- High Spectral Resolution Lidar (HSRL) (NASA/LaRC)
- Research Scanning Polarimeter (RSP) (NASA/GISS)
Aerosol Backscatter and Extinction Comparisons
HSRL Flight of June 15 (afternoon flight)
Comparison of Aerosol Properties from WRF-Chem and HSRL during CARES: 6/15/2010 flight 2

WRF-Chem results are preliminary
Comparison of Aerosol Extinction from WRF-Chem and HSRL during CARES: 6/15/2010 flight 2

WRF-Chem
- Too high in the free troposphere
- Too low in BL

Potential reasons
- Size distribution may not be representative
- Dust not included in model
- Emissions may be inaccurate
- Boundary conditions from MOZART bias loading high in free troposphere

Note: WRF-Chem results are preliminary; additional runs are planned.
Variability of aerosol along direction of flow (6/19/2010 flight 2)

- 532nm Backscatter from HSRL and the WRF-Chem were averaged perpendicular to direction of flow for region inside box at left
- WRF-Chem somewhat underestimates HSRL for this case, but show similar trend along flow direction
Mixed Layer Heights
Mixing Layer Height Determined from Aerosol Backscatter Profile

- HSRL ML heights derived from cloud-screened aerosol backscatter profiles measured by the airborne HSRL
- Automated technique uses a Haar wavelet covariance transform to identify sharp gradients in aerosol backscatter at the top of the ML (Brooks, *JAOT*, 2003)
HSRL Mixing Layer Height vs. Maximum Aerosol Gradient

- Mixing layer height related to boundary layer height
- Height of maximum aerosol gradient related to aerosol scale height
Comparison of ML heights from PNNL radiosondes and HSRL during CARES

HSRL ML heights and radiosonde-derived ML heights show good agreement when HSRL was within 15 km and 30 minutes of the launch site.

15 km/30 min. Constraints (27 pts)
Least-sq Slope = 0.9219
Least-sq Intercept = 4.4608
$R^2 = 0.8626$
Bisector Slope = 0.9925
Bisector Intercept = -50.6581
RMS Error = 157.1020 (20.8713%)
Bias Diff = 56.5439 (7.5120%)
HSRL-derived aerosol backscatter for the 15 June 2010 afternoon flight
Comparison of ML heights from the WRF-Chem model and HSRL during CARES

*Green filled area denotes terrain

*WRF-Chem BLH – Standard Method is Preliminary
Comparison of mixed layer heights from the WRF-Chem model and HSRL during and CARES

ML height comparison across all CARES flights:

- Bisector Slope = 0.71
- Bisector Intercept = 292
- \(R^2 = 0.37 \)

- Comparisons of WRF-Chem and HSRL ML height shows rough agreement between the model output and the airborne measurements across most flights.

- Influence of differences in ML height calculation methods being explored.

WRF-Chem data are preliminary
Good agreement between HSRL and WRF-Chem on the temporal evolution of ML

- Plots show *observed* and *simulated* mixing layer depth along the B-200 flight (top figure, from Fast, et al., *ACP*, 2012)

- Filled boxes denote the 25th and 75th percentiles and vertical lines denote the 5th and 95th percentiles. Lines connecting the white dots denote the median value for each hour
Comparison of HSRL data with GEOS-5 model during DISCOVER-AQ

PBL height data from HSRL has been crucial for diagnosing issues with the land surface in the NRT GEOS-5 system.

- Correcting the soil moisture
- Prescribing observed precipitation

Summary

• NASA HSRL data products being used for:
 – Model evaluations
 – Vertical context of in situ measurements
 – Aerosol typing
 – Partitioning of AOD above/below mixed layer

• Comparisons with WRF-Chem ML heights, backscatter, and extinction currently underway

• HSRL mixed layer heights are available for several ASP/ASR missions:
 – MaxMex, MaxTex, CHAPS, RACORO, CalNex, and CARES

• HSRL will deploy on the summer portion of TCAP campaign
 – Anticipate doing similar evaluation of WRF-Chem
Backup Slides
Mixing Layer Height Methodology

Radiosonde Potential Temperature

• ML heights derived from radiosondes launched at the T0 and T1 sites during CARES
• Automated technique uses a modified Heffter method to determine the inversion in the potential temperature profile (Heffter, AMS Conf Proc., 1980; Hayden, AE, 1997)
• Heffter chose two constraints to determine the mixing layer from a potential temperature profile
 • 1. Lapse rate:
 \[
 \frac{\Delta \theta}{\Delta z} \geq 0.005^\circ K/m
 \]
 • 2. Inversion temperature difference:
 \[
 \theta_{top} - \theta_{base} \geq 2^\circ K
 \]
• Hayden et al. modified this for complex terrain using a lapse rate of 0.002 °K/m and an inversion temperature difference of 1°K

WRF-Chem simulated ML

• The estimated boundary-layer depth is based on the gradients of potential temperature and humidity (Fast et al., ACP, 2012)
Mixing Layer Height Radiosonde Case
June 28th at 17 UTC (9 LST)

Heffter & Hayden Technique

T0 site
- Heffter: 0.715 km
- Hayden: 0.51 km

T1 site
- Heffter: 0.959 km
- Hayden: 0.859 km

T0 Site ML
- Observed: ≈0.50 km
- Simulated: ≈0.25 km

T1 Site ML
- Observed: ≈0.88 km
- Simulated: ≈0.73 km

WRF-Chem

T0 site
- Observed: 0.454 km

T1 site
- Elevation: 0.454 km
Comparison of ML heights from the WRF-Chem model and HSRL during CARES

Green filled area denotes terrain
Comparison of ML heights from the WRF-Chem model and HSRL during CARES

*Green filled area denotes terrain
Distribution and Transport of aerosols during CARES – June 15 L2 Case

532nm Backscatter from HSRL and the WRF-Chem model demonstrate aerosol distribution and transport in the Sacramento region.

- WRF-Chem somewhat underestimates HSRL for this case, but show similar patterns.

- 532nm Backscatter gradient along the flow direction.
Comparison of ML heights from UH ceilometer and HSRL during CalNex

- HSRL ML heights matched with ceilometer-derived ML heights at the times when HSRL was within 15 km and 15 min. of the ceilometer measurements
 - Least-Sq R = 0.9931
 - RMS Error = 30.9 (3.06%)

- Ceilometer data shows that the ML did not grow rapidly in 30 min, so the HSRL values provide a snapshot of ML heights in the region
Comparison of ML heights from UH ceilometer and HSRL during CalNex

- The HSRL measurements included a large portion of the Los Angeles basin and we were able to study whether the ceilometer values could be applied to the entire area.
- Ceilometer ML heights, which were also computed from aerosol gradients, were subtracted from the HSRL ML heights within ±15 min. of the aircraft overpass, and data were limited to ground altitudes of 500 m or less, i.e., the basin area.

ML heights did show differences on some days up to 1000 m or more, at times very close to the ceilometer.

During some flights, ceilometer data correlated closely with ML heights throughout the region.
Comparison of ML heights from the WRF-Chem model and HSRL during CalNex and CARES

- While the WRF-Chem and HSRL ML heights tend to agree (1), the algorithms can differ in low aerosol loading conditions (2) and other situations (3), perhaps related to temperature gradients
- These discrepancies can be understood by assessing aerosol properties
Comparison of ML heights from the WRF-Chem model and HSRL during CalNex and CARES

- Preliminary WRF-Chem and HSRL ML height comparisons show reasonable agreement between the model output and the airborne measurements across most flights, as shown by the following scatter and regression plots.

- Ground altitude (MSL) is shown by color, with higher altitude mountainous regions shown in orange and red.
Comparison of ML heights from the WRF-Chem model and HSRL during CalNex and CARES

- Plots show *observed* and *simulated* mixing layer depth along the B-200 flight paths over and around the Los Angeles (top figure), and Sacramento (bottom figure, from Fast, et al., ACP, 2012) areas in terms of percentiles for each hour of the day over the entire campaign.
- Filled boxes denote the 25th and 75th percentiles and vertical lines denote the 5th and 95th percentiles. Lines connecting the white dots denote the median value for each hour.
Comparison of ML heights from PNNL radiosondes and HSRL during CARES

- Radiosonde ML heights were subtracted from the HSRL ML heights within ±15 min. of the aircraft overpass.
- ML heights from T0 and T1 at times differ widely from ML heights measured across the surrounding region, even when the ML height was not growing rapidly.

![Comparison of ML heights from PNNL radiosondes and HSRL during CARES](image-url)
Comparison of Raman lidar and airborne HSRL ML heights

June 4, 2009 (RACORO)

Raman lidar water vapor mixing ratio

ML heights from RL+AERI potential temperature

Airborne NASA/LaRC HSRL Aerosol Backscatter

ML heights from RL+AERI potential temp. profiles and airborne HSRL aerosol backscatter measurements within 10 km and 10 min of SGP

June 4, 2009 (RACORO)

DOD SGP Raman Lidar

04-Jun-2009

Raman lidar water vapor mixing ratio

ML heights from RL+AERI potential temperature

Airborne NASA/LaRC HSRL Aerosol Backscatter

ML heights from RL+AERI potential temp. profiles and airborne HSRL aerosol backscatter measurements within 10 km and 10 min of SGP

Least-Sq Slope = 0.7996
Least-Sq Intercept = 356.2510
Least-Sq R = 0.7618
Bisector Slope = 1.0478
Bisector Intercept = 15.0972
rms error = 345.9677
(24.4550%)
Bias diff = -80.8358(-5.7139%) N = 84

SGP ML - BLH AERI PT (m)

HSRL ML (m)
Comparison of Aerosol Properties from WRF-Chem and HSRL during CARES: 6/15/2010 flight 2

WRF-Chem is Preliminary
WRF-Chem has many non-physical outliers at very high altitudes (shown in orange to red below). These are an obvious error and are removed from comparisons with HSRL.
Comparison of ML heights from the WRF-Chem model and HSRL during CARES

*Green filled area denotes terrain

*WRF-Chem BLH – Standard Method is Preliminary
Comparison of ML heights from the WRF-Chem model and HSRL during CARES

*Green filled area denotes terrain

*WRF-Chem BLH – Standard Method is Preliminary