

Welcome: AMIE/MJO Discussions Breakout

Wednesday March 14, 2:45 – 4:15 pm

Agenda

- Welcome & AMIE overview (Chuck Long & Sally McFarlane)
- AMIE/DYNAMO Field Campaign: Achievement and Beyond (Chidong Zhang)
- Scanning Radar Observations on Addu Atoll (Bob Houze & Courtney Schumacher)
- DYNAMO/CINDY/AMIE sounding network: Performance and Plans for Quality Control (Paul Ciesielski)
- Satellite retrievals for AMI-Gan and AMIE-Manus (Pat Minnis)
- Discussion: Collaborative observational and modeling studies (Samson Hagos, Lead)

Evening session

- 6:30 7:30
- Breakout room 3, Washington A
- AMIE/DYNAMO Observation-Modeling
 Integration
- Specify fields derived from observations that can be used directly in model validation
- Plus Bob Houze further radar examples of evolution of cloud system organization, and hydrometeor details with S-band

AMIE: Overview and Preliminary Examples

Chuck Long and Sally McFarlane

http://campaign.arm.gov/amie/

CLIMATE RESEARCH FACILITY

Project Timeline

RV Mirai, RV Revelle, (plus IOP and EOP observations) AMIE-Manus continues normally.

Significant Instrument Issues

- X/Ka SACR
 - Failure at both sites
- Gan HSRL
 - Damage in shipping, control computer
- Gan Wind Profiler
 - Late delivery from vendor
- Manus C-SAPR
 - Scanning failure on Dec. 8, 2011
 - Propagation phase issues

Were deployed for the first time during AMIE and the remote conditions made trouble-shooting and ordering of replacement parts difficult.

State of CSAPR data during AMIE Manus

- The C-Band radar at Manus island is a unique installation providing new insights into the three dimensional structure of equatorial precipitation.
- There are issues with the propagation phase from the CSAPR.
 For data purposes this means the radar should be considered as a non-polarimetric Doppler radar.
- This makes rainfall retrievals and DSD retrievals very difficult and very large uncertainty on the output.
- What is useful is the uncorrected reflectivity and radial velocity.
- In addition to the raw data two VAPS will be available by May: Corrected Moments in Antenna Coordinates (CMAC) and Mapped Moments to a Cartesian Grid (MMCG).

MMCG

- Moments Mapped onto a Cartesian Grid with the CF at the origin.
- For the Manus CSAPR the resolution is 1x1x0.5km (x,y,z) and the bounds are 240x240x17km.
- Processing is mainly complete, need to document and release.
- Data availability is spotty as shown below. Last data received was from December 8th (still assessing quality from November 25th to December 8th).

Percent

Significant success as well!

- Grueling 8/day sonde schedule for 6 months
- Gan had 99% of possible sondes, with 80% of possible "good" [<400mb, T and Td OK]
- Through Feb 22 Manus had 92% possible sondes, with 82% of possible "good"
 - No relaunch for Manus

Significant success as well!

- Most of the base instruments at both sites performed well
 - KAZR, MPL, VCeil, MWR, Met, Rad, TSI, Precip
- Allows for many VAPs
 - ARSCL, Merged sonde, Microbase, MWRRet, AOD, etc.

Gan Data Stream Status

10/01	10/16	10/31	11/15	11/30	12/15	12/30	01/14	01/29
	Ceil							
_	Disdrometer							
	Gndrad							
	HSRL							
	KAZR							
	Met							
	MWR							
_	MWR3Channel							
	SACR							
	Skyrad							
	Sonde							
	TSI							
-	WBRG							
10/01	10/16	10/31	11/15	11/30	12/15	12/30	D1/14	01/29
			🗯 Good 📒 Suspect		🗯 Bad 🗮 Missing			

MJO Events

- Gan centered on about Oct 30, Nov 30, late Dec
- Manus centered on about Sept 30, Nov 9, and Dec 9

Gan Events

- First 2 Gan events stronger, last weaker
- Significant mid level moistening
- Increased low level westerlies, upper easterlies
- Nearly overcast skies, greater SW cloud effect

Gan Sonde RH (%), 20111001 - 20120209

Manus Events

- All Manus events weaker, imbedded in La Nina conditions
- Significant mid level moistening
- Increased low level westerlies, upper easterlies, less than Gan
- Nearly overcast skies, greater SW cloud effect

Gan

Manus

Daily Accumulated Precip

Gan

Manus

 Optical Rain Gauge (ORG) significantly higher than PWD or WBRG at Gan; somewhat higher at Manus

Cloud Fraction & Stability

Gan

Manus

- Frequent low and mid-level cloud bases at both sites
- Mid-level stable layers slightly more pronounced at Gan

Following are Extra

AMIE Hypotheses

• AMIE-Gan:

- Deep convection can be organized into an MJO convective envelope only when the moist layer has become sufficiently deep over a region of the MJO scale
- Specific convective population at different stages are essential to MJO initiation
- Upper ocean processes play essential roles in MJO initiation in the Indian Ocean

- AMIE-Manus
 - Surface energy fluxes drive the MJO (thus the weakening over the maritime Continent)
 - Heating and drying by convection stabilize the atmosphere and dampen longer-term variability; the trailing stratiform anvil region cools and moistens the lower troposphere via rain evaporation
 - "Recharge-discharge" mechanism; the dry free atmosphere is moistened by shallow convection, allowing transitioning to the disturbed phase of the MJO

AMIE-Gan Sites

o Hulhumeedhoo

SMART-R C-Band

B Spit_Site

Hithadhoo a 2 km AMF X Ka Wharf_Site a SACR SPOIKa

≥ 9 km

AMF Main w KAZR

• Vilingili

AMF2_main Gan-Maldives

AMIE-Manus Sites

R Var_Site

C-Band Radar

Site

6.1 km

Variability

Site

Manus, C-SAPR 7.3 km

Manus Main Facility

(ARM Manus