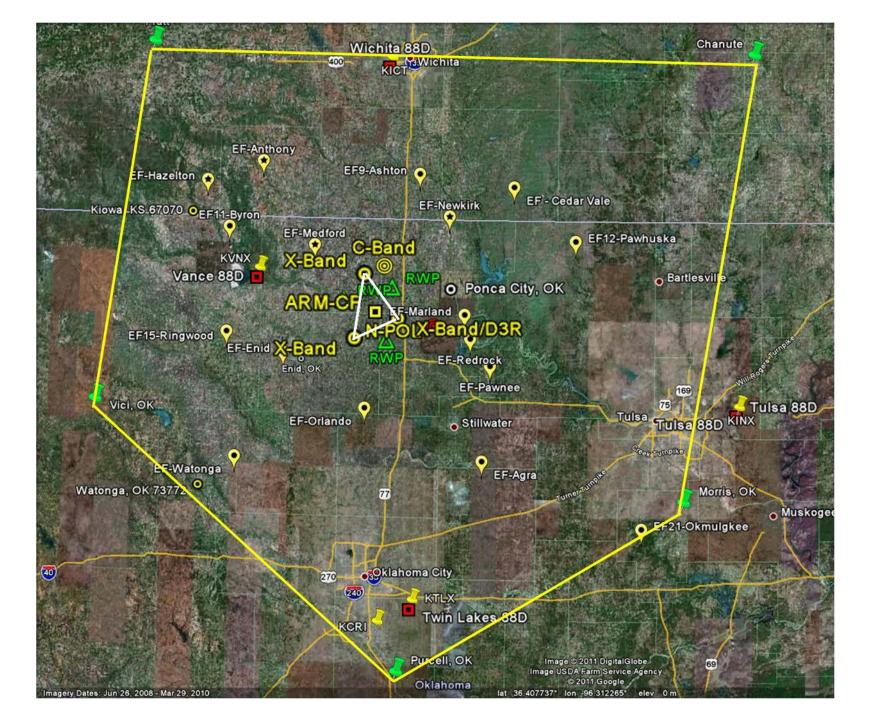

MC3E Breakout Tuesday, March 13 1:00 – 2:30 PM

- 1:00 1:10 Jensen MC3E Overview and Status
- 1:10 1:20 Collis MC3E Precipitation Radar
- 1:20 1:30 North 3-D wind retrievals during MC3E
- 1:30 1:40 Kalesse Cloud classification during MC3E
- 1:40 1:55 Xie MC3E Forcing dataset
- 1:55 2:10 **Fridlind** MC3E + CStAT = A Simple Model for Multi-PI Collaboration
- 2:10 2:20 **Krueger** Convection and the Boundary Layer during MC3E
- 2:20 2:30 Tao Diurnal Variations during MC3E

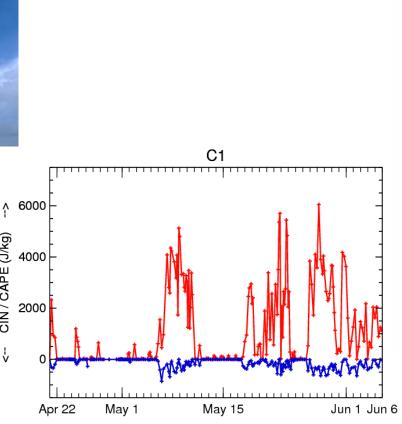
The Midlatitude Continental Convective Clouds Experiment (MC3E): Introduction and Overview of Field Campaign Observations

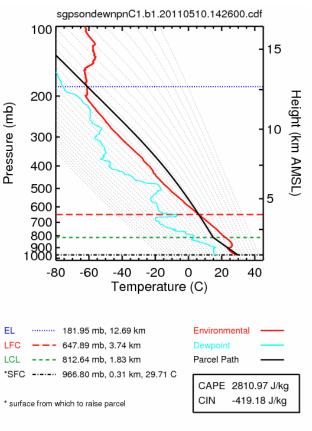

Michael P. Jensen Brookhaven National Laboratory

13 March 2012 ASR Science Team Meeting, Arlington, VA

Quick Overview of MC3E

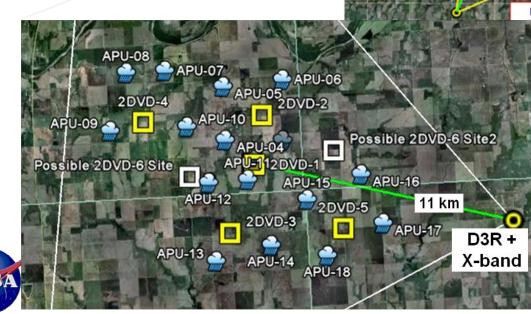
- Who? DOE Atmospheric Radiation Measurement Program NASA Global Precipitation Measurement Ground Validation
- What? Ground-, Aircraft-, Satellite-based observations of convective cloud systems. First demonstration of many of the new ARRA instruments
- Where? Centered at the ARM Southern Great Plains site in Lamont, OK Extended facilities from Southern Kansas to south of OKC
- When? April 22 June 6 2011
- Why? 1) Advance the understanding of the different components of convective parameterization


2) Improve the fidelity of satellite estimates of precipitation over land.



MC3E sounding operations

- More than 25 staff launched 4-8 sondes/day at 6 sites
- More than 1400 radiosondes over 6 week period
- Variational Analysis Product S. Xie (LLNL)

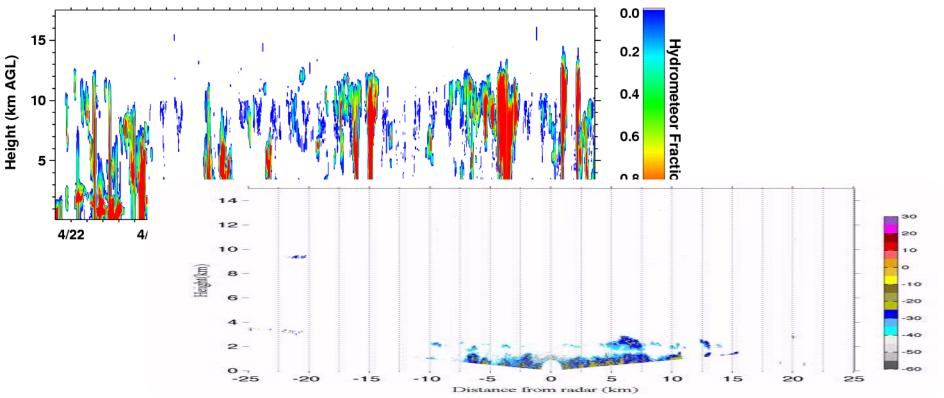


MC3E Sampling: Ground

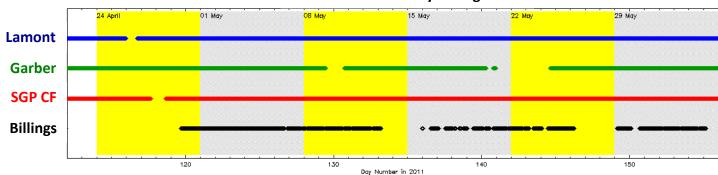
- Multi-Freq./ Doppler / polarimetric/ profiling radars
 - Sub-pixel DSD/rain variability
 - 3-D (solid/liquid/mixed) HID
 - Cloud water......(maybe)
 - Kinematics
- Network embedded in sounding array
 - CRM Forcing
 - Budgets

NASA Disdrometer network

- 5 2DVD 3rd Generation, compact
- 16 Parsivel (Autonomous)
- 1-3 Joss (915 Profiler collocated)
- 20-40 Rain gauges collocated


ARM Cloud Radars During MC3E

KAZR installed – Dec. '10 (data collection started 1/18)


SACR installed – Feb. '11 (ingested data begins 4/30) Issues with scanning pedestal, W-band transmitter Scanning data 5/24 – 6/6 (Poster - Borque et al.)

Scott will talk about Precip Radars

Inner Domain Thermodynamic Profiling during MC3E

- Objective: to characterize "small-scale" horizontal gradients in temperature and water vapor in pre-convective and convective environments
- Approach: deploy ground-based infrared spectrometers (i.e., AERIs) at each of the ARM X-band radar locations; retrieve T/q profiles from radiance observations
- Status as of Sep 2011:
 - Data collection was reasonably complete
 - Analysis of calibration underway
 - Initial retrievals will be performed in coming months

AERI Data Availability during MC3E

Contact:

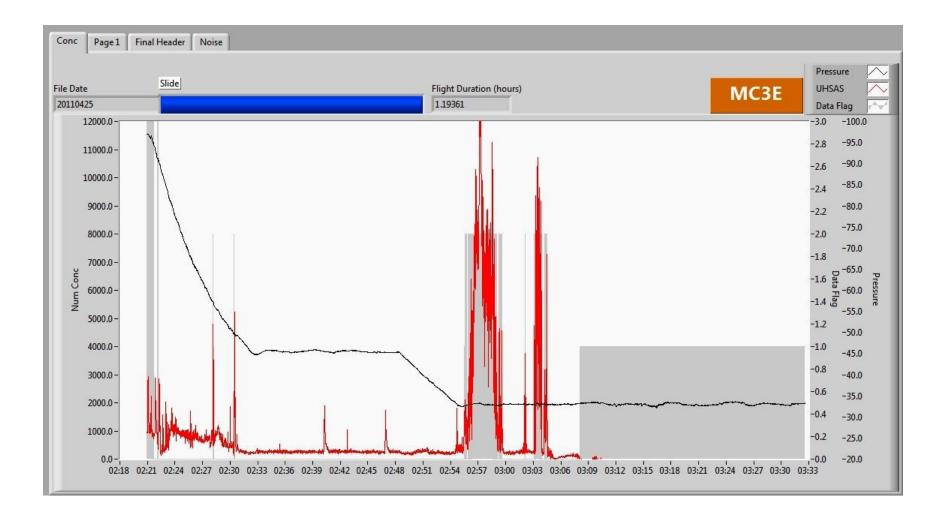
Dave Turner

dave.turner@noaa.gov

GPM Airborne Assets during MC3E

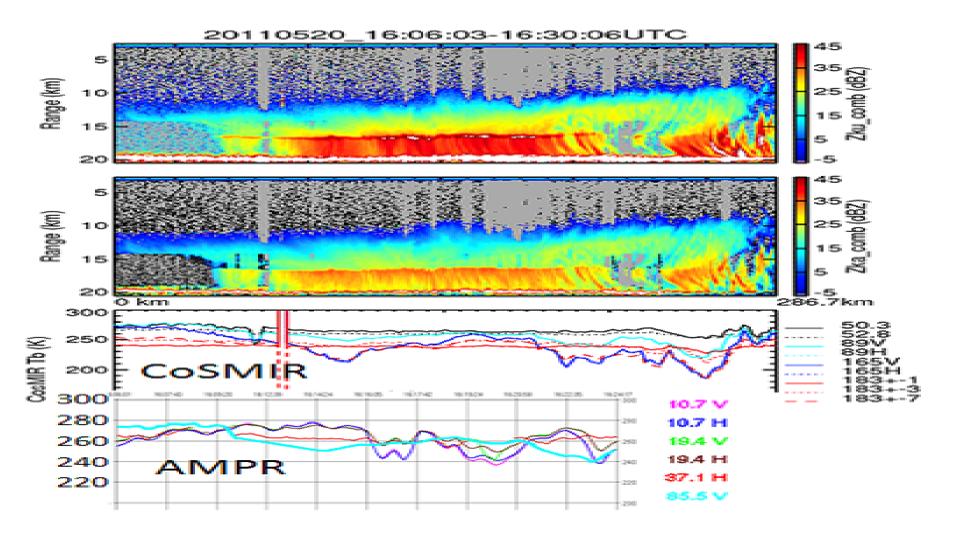
GPM Core Satellite "Simulator"

In Situ MIcrophysics


- NASA ER-2: Satellite simulator
- 86 flight hours
- Base: Albuquerque (Kirtland) AFB , NM
- UND Citation
- Microphysics
- 50 flight hours
- Base: Ponca City, OK

Instrument	Characteristics	Instrument	Measurement
AMPR (Radiometer, H +V)	10.7, 19.35, 37.1, 85.5 GHz	King	Cloud liquid water
Resolution @ 20 km range	0.6 km (85.5 GHz), 1.5 km (37.1 GHz), 2.8 km (10.7- 19.35 GHz)	PMS 2D-C/CIP	Cloud particle spectra
CoSMIR(Radiometer, H+V)	183.3+/-3, 183.3+/-8 GHz	HVPS	Precipitation particle spectra
Resolution @ 20 km range	1.4 km footprint at nadir	СРІ	Cloud particle images
HIWRAP Ka-Ku band	13.91/13.35 GHz,	CDP	Cloud droplet spectra
Radar	35.56/33.72 GHz	Nevzorov	Total water content
Transmit peak power	30 W (Ku), 10 W (Ka)	Rosemount icing	Supercooled liquid
3 dB beamwidth	2.9° Ku, 1.2° Ka	e e e e e e e e e e e e e e e e e e e	
$MDS (dBZ_e, 60 \text{ m res.}, 3.3)$	0.0, -5.0 dBZ _e	probe	water
μs chirp pulse, 10 km range)	-	CN/UHSAS	Aerosol

UND Citation


Andrea Neuman (UND), Mike Poellet (UND) Jennifer Comstock(PNNL), Jason Tomlinson (PNNL) 15 flights (Good UHSAS, HVPS data on 9 flights)

ER-2

9 missions (3 land surface)

5 flights coordinated with UND Citation and within 100 km of CF

Summary of conditions sampled during MC3E

Categ ory	Description	# days sampled	Days
1	Convective Line / Cell events	8	4 /22,25; 5 /11,18,20,23,24,31
2	Widespread Stratiform Rain	3	4/27, 5/1, 5/10
3	Elevated Weak (Overnight) Convection	3	4 /23, 24; 5 /18
4	Boundary Layer Clouds	10	4 /26; 5 /5,13-15,19,27-29; 6 /1
5	Mid- or Upper-level clouds	7	5 /2,3,8,9,25,26; 6 /2
6	Clear	14	

- Coordinated aircraft missions focused on categories 1 & 2
- Dedicated boundary layer cloud flight by UND Citation 5/27 & 5/30
- Enhanced sounding operations focused on categories 1-3

Where can we get data? It depends which data you want

ARM MC3E observations - IOP archive (http://iop.archive.arm.gov/arm-iop/2011/sgp/mc3e) Soundings (except CF), ARM 2DVD, BNL MWR (S05), VARANAL, Citation HVPS & UHSAS

Standard ARM observations (including ARRA instrumentation) – **www.archive.arm.gov** All "raw" radar/lidar observations, radiation, surface meteorology, CF soundings, etc...

Value-added (Evaluation) products - http://www.arm.gov/data/vaps C-SAPR Gridded Radar Moments (MMCG) [10 days +]

NASA DAAC

N-Pol radar, Disdrometer network, ER-2, Citation ftp://gpm.nsstc.nasa.gov/gpm_validation/mc3e/

Yet to come!

KAZR-ARSCL (Johnson et al.), QPE (Collis et al.), Vertical Velocity (North et al.),

MC3E Posters (19)

Bartholomew - ARM's Disdrometer Suite: Capabilities and Deployment

- Borque et al. Low-level Divergence Measurements During MC3E
- Collis et al. Moments to Models: Progress Towards a Suite of Precipitation Radar VAPs
- Crowell and Turner Using Dynamic and Thermodynamic Profiler Retrievals to Improve the Forecast of the May 24, 2011 Outbreak: an Observing Systems Simulation Experiment
- Dunn et al. Characterizing Convective and Stratiform Precipitation Regimes Observed During MC3E Using C-SAPR Radar

Giangrande et al. - Precipitation Estimation from the ARM Distributed Radar Network During the MC3E Campaign

- Jensen et al. Large-scale atmospheric state and cloud/precipitation characteristics during MC3E
- Khaiyer et al. Improved TOA Broadband Shortwave and Longwave Fluxes over Various ARM Domains
- Lesage and Krueger Analysis of convectively generated cold pools and fronts from mesonet data
- Newsom et al. Comparison of Vertical Velocity Observations Between the ARM Doppler Lidar and the 915 MHz Radar During MC3E
- North et al. Validation of Multiple-Doppler Analysis of Convective Clouds Using the ARM Precipitation Radar Network During MC3E
- Rutledge et al. Analysis of X-SAPR and C-SAPR data from MC3E
- Schatz et al. The New and Improved Southern Great Plains
- Sivaraman et al. Routine Planetary Boundary Layer (PBL) Height Value-Added Product (VAP) Development Using Radiosonde Measurements
- Tridon et al. Collocated UHF and Ka-band Radar Measurements for Rain Profile Retrievals at ARM SGP Facility Turner - Retrieved Temperature and Humidity Profiles from the AERI During MC3E
- Williams Merging Doppler Velocity Spectra in Time and Height to Overcome Mismatch in Radar Pulse Volumes from Collocated Radars
- Wu et al. MC3E: Post-mission Simulations
- Xie et al. Development of Multi-scale Large-scale Forcing Data Sets for MC3E Cloud Modeling Studies