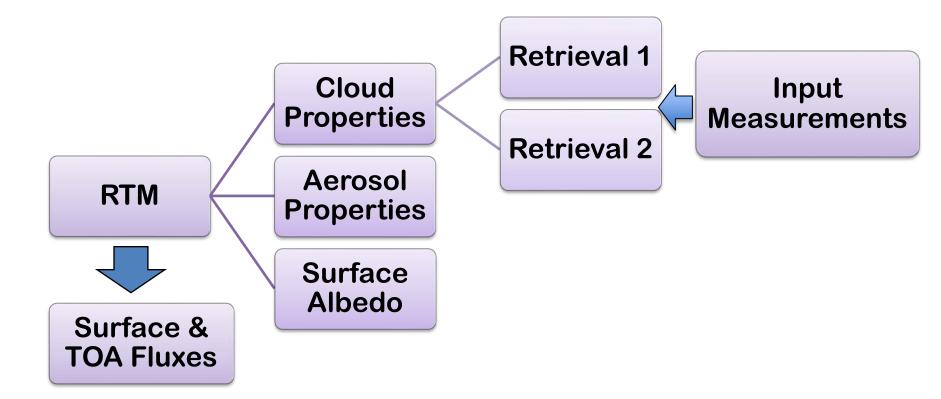
Flux Closure for Evaluation of Cloud Retrievals

Sally McFarlane, Jennifer Comstock, Alain Protat, Julian Delanoe, Min Deng Chaunfeng Zhao, Shaocheng Xie


Motivation

- ARM community has multiple cloud retrievals, which often give very different results
- Modelers want to compare their results to ARM retrievals, but do not know which one to use or how to assess uncertainty
- Need a way to compare retrievals and determine:
 - Which retrievals work best under which conditions

Uncertainty of retrieved values

 Radiation is one of the important outcomes of a model cloud scheme → Use measured radiative fluxes to evaluate retrievals

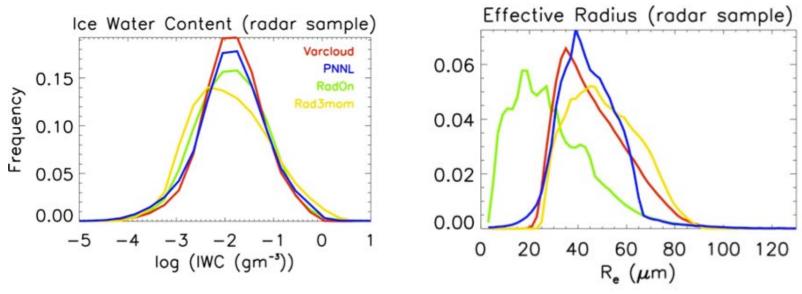
Algorithm Evaluation using Radiative Closure

Example: TWP High Clouds Intercomparison

Comstock, Protat, McFarlane, Delanoë, Deng

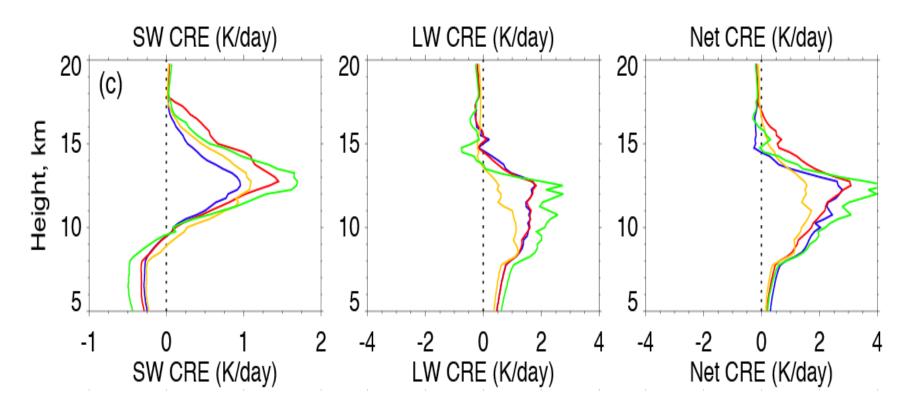
Radar Only

- Doppler Moments (2)
- Variational scheme
- Conditional scheme

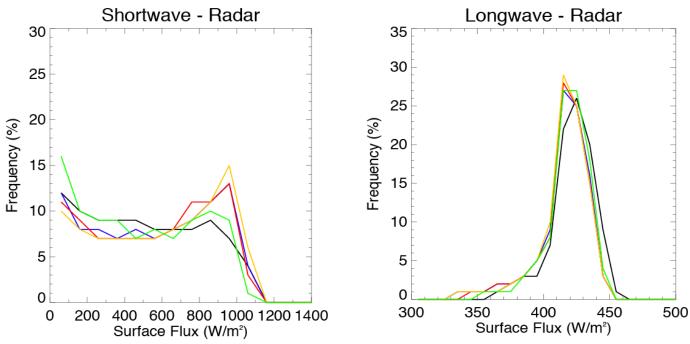

Lidar Only

- Variational scheme
- Conditional scheme

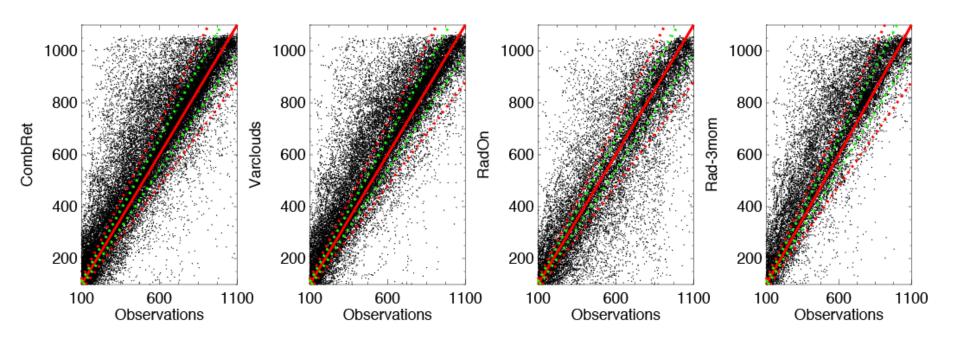
Lidar+Radar


- Doppler Moments (2)
- Variational scheme
- Conditional
- scheme

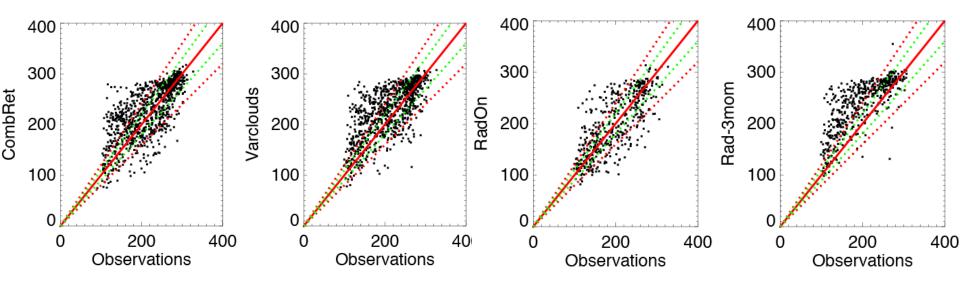
Results for Radar Sample


- RadOn (Z-V retrieval) has much smaller Re
- Rad3Mom (Z-V-width) has smallest IWC and largest particle size
- In general, IWC agreement is better than Re

Cloud Radiative Effect Profiles


• Differences in cloud properties have large impact on radiative heating profiles

Surface Flux Closure Results (Radar Samples)


- RadOn best reproduces overall distribution of observed SW surface fluxes
- LW surface fluxes not useful for distinguishing between retrievals for optically thick ice clouds

Shortwave Surface Flux

Retrieval	# Points	R2	< 10%	< 20%
CombRet	8222	0.90	38.5	58.5
Varclouds	8454	0.91	38.1	57.9
Rad3mom	8541	0.87	34.0	54.0
RadOn	7649	0.91	35.9	55.9

Longwave TOA Fluxes

Retrieval	R2	< 10%	< 20%
CombRet	0.74	48.2	94.7
Varclouds	0.72	43.1	93.3
Rad3mom	0.77	33.2	87.2
RadOn	0.77	42.3	96.3

Lessons Learned

- Importance of common dataset
 - Makes evaluation of retrieval physics easier by removing other aspects (averaging, cloud masks, phase determination, etc)
 - These are important to understand, but they confuse the results
- Fluxes may not be enough to constrain some aspects of retrievals (e.g. LW surface fluxes)
- On average, simple-regression relationship did as well at matching observed fluxes as Z-V algorithm
- Particle size is more uncertain than IWC in retrievals
- Radiative transfer model has assumptions about mass/dimension that may not be consistent with retrieval

BBHRP Status

- Over the past year, the radiative transfer calculation (BBHRP) has been separated from the specification of input datasets (RIPBE)
- Multiple years (2002-2007) of RIPBE and BBHRP 1-min files have been produced at SGP
- Initial version of BBHRP-Average file created
- Still need to:
 - Add TOA fluxes to BBHRP-average file
 - Add precipitation and mixed phase flags to RIPBE
 - Create RIPBE-Average file

BBHRP-ACRED Plans

McFarlane, Shippert, Zhao, Xie

• Use RIPBE code to create gridded input data

– ACRED cloud file will replace Microbase

- Other surface/aerosol/atm inputs will stay same
- Run BBHRP on RIPBE-ACRED datasets

– Create 1-min and 30-min averages

• Compare calculated fluxes to observed surface and TOA fluxes to evaluate retrievals

Potential Issues

- Input Data Sets Used in Retrievals
 - Reflectivity (ARSCL, CloudNet, other?)
 - Attenuation correction?
 - Liquid Water Path (MWRRET, mwrlos, other?)
- Cloud Detection
 - Radar, Lidar, or Radar + lidar ?
 - Cloud Masks (reflectivity thresholds, SNR, averaging)
 - Cloud boundaries
- Cloud Classification
 - Definition, detection, treatment of mixed-phase
 - Some retrievals only work for specific cloud types
 - Do we fill in "missing" clouds? Or only analyze given cloud type?

Potential Issues (2)

- Precipitation
 - Detection and treatment of precipitation
- Optical properties for ice clouds

 Consistency between retrieval and RT model
- Time Resolution
 - Average or sub-sample cloud properties?
- 3D Radiative Transfer
 - Only use homogenous cases?
- Flux Closure is not sufficient by itself to constrain retrieval uncertainty

Discussion

- What is the overall goal?
 - Identify a "best" retrieval?
 - Identify the best retrieval for each condition?
 - Assess the uncertainty in broadband flux for the given retrieval?
- Should we move toward common input datasets and common cloud classification?
 - If so, which ones?