The dependence of arctic mixed-phase stratus ice cloud microphysics on aerosol concentration using observations acquired during ISDAC G. McFarquhar, R. Jackson, A. Korolev, M. Earle, P. Liu, P. Lawson, S. Brooks, M. Wolde, A. Laskin and M. Freer

> ASR 3rd Science Team Meeting, 14 March 2012, Arlington, VA

- 1. Motivation
 - What different effects can aerosols have on mixed-phase clouds?
- 2. ISDAC Data
 - Development of value added cloud product
- 3. Observed Aerosol-Cloud Relations
 - What do correlations between cloud µphysics & aerosols tell us about indirect effects?
- 4. Comparison of ISDAC/M-PACE Data
 - Impact of varying surface & aerosol conditions
- 5. Future investigations
 - ISDAC/M-PACE data ideal for examining impact of surface, meteorological & aerosol conditions

Development of Integrated Cloud Product

Have probe specific information

Developed integrated cloud product to derive cloud parameters by:
1) Compare N(D) in overlapping size ranges
2) Conduct mass closure tests

Image of single-layer cloud sampled on 8 April

Korolev and Strapp

Image of single-layer cloud sampled on 8 April

Combinations of ramped legs through cloud, and level legs above/below cloud flown to get data for assessing cloudaerosol interactions

Korolev and Strapp

Image of single-layer cloud sampled on 8 April

Combinations of ramped legs through cloud, and level legs above/below cloud flown to get data for assessing cloudaerosol interactions

8 and 26 April over sea ice

18 April over land

Korolev and Strapp

NRC NAX radar X band radar Z and V_d crossections

Strong capping inversion between normalized altitude (z_n) of 0.8 to 1.2

Strong capping inversion between normalized altitude (z_n) of 0.8 to 1.2

Subadiabatic LWC for $z_n > 0.8$ consistent with entrainment of dry air above cloud top or growth of ice at expense of liquid water

Ice cloud properties not well correlated with PCASP concentrations below cloud \rightarrow look at how correlated with above cloud aerosol

How does this relate to #s of IN?

Ice cloud properties not well correlated with PCASP concentrations below cloud \rightarrow look at how correlated with above cloud concentration

How does this relate to #s of IN?

IN sampled at ~-25°C at water sub-saturation

Ice cloud properties not well correlated with PCASP concentrations below cloud \rightarrow look at how correlated with above cloud concentration

How does this relate to #s of IN?

liquid contents of cloud not sufficient for a lot of riming growth on most days

M-PACE/ISDAC

 Compare frequency distributions of cloud properties from M-PACE (pristine, open water) and ISDAC (dirtier, less open water)

LWC < for ISDAC than M-PACE, consistent with more open water during M-PACE

ISDAC

M-PACE

ISDAC

M-PACE

ISDAC

N_{ice} < for ISDAC than M-PACE, consistent with cold 2nd indirect effect

Summary

- For ISDAC single-layer cases sampled:
 - Nucleation of liquid drops occurred near cloud base, N_I correlated with N_{PCASP} below cloud
 - Data consistent with glaciation indirect effect operating through entrainment of IN & dry air above cloud
 - Riming indirect effect did not play big role
- Difference between ISDAC & M-PACE data consistent with operation of cold 2nd indirect effect & greater surface fluxes in fall

Future Work

- Great data set for evaluation of models and remote sensing retrievals
- Future modeling studies should isolate how differences in ISDAC & M-PACE aerosol, surface & meteorological conditions cause changes in microphysical properties
- Need data in greater range of data for investigating different effects on cloud µphysics