NPF Focus Group White Paper: Objectives

- Develop models for *Nucleation Rates & Growth Rates* -empirical models (short term)
 - -first-principles models-link to gas phase precursors
 - -climatically important properties

-hygroscopicity, phase, surface tension

- 2. Incorporate mechanistic N&G models into regional models
- 3. Incorporate mechanistic N&G models into GCMs

New Particle Formation (NPF) Event, Boulder². Distinguishing Nucleation from Growth

Iida et al., JGR., 111: D23201, 2006

Why is Nucleation an Important Atmospheric Process?

$$J(D_{p}) = J \exp \left\{ -\frac{A_{Fuchs}k}{dD_{p}/dt} \Psi \right\}$$

$$\bigvee_{NpF} R_{ate} \bigvee_{Vucleation} R_{ate} \int_{Survival} P_{robability}$$

<u>Answer:</u> Both *J* and dD_p/dt are much higher than was originally thought possible. Our research aims at understanding why.

McMurry & Friedlander, Atmos. Environ. 13:1635, 1978 Rodney Weber, PhD Thesis, 1995

NPF Focus Group White Paper: Approaches

- 1. Model Development
 - -Instrumentation
 - -gas & aerosol phase chemistry measurements
 - -Atmospheric observations

-vertical measurements

-VAPs (value added products): e.g., survival probability

-Laboratory studies

- 2. Model Validation: Incorporation into regional models
- 3. Global Modeling: Incorporation into global models

NPF Leadership

Peter McMurry (University of Minnesota) James N. Smith (NCAR) Chongai Kuang (BNL)

Metrics for Evaluating Progress

- -Publish important papers on measurement methods
- -Publish experimentally-verified models for J (nucleation rates)
- -Publish experimentally-verified models for GR (growth rates)
- -Publish papers that compare atmospheric observations with regional models
- -Incorporate N&G models into GCMs & evaluate validity
- -Publish papers that describe effect of NPF on climate

Highlights

Chongai Kuang (BNL), Modi Chen (UMN), Jun Zhao (NCAR, UMN), Jim Smith (NCAR), Peter McMurry (UMN), Jian Wang (BNL) (ACP, 2012, in press) "Size and time-resolved measurements of 1 to 5 nm freshly formed atmospheric nuclei"

$GR_{actual} >> GR_{H_2SO_4}$

 $\Gamma >> 1$

Growth Factors: S=GR/GR_{H2SO4}

Γ Values below 5 nm

Atlanta, GA: Aug 7, 2009

Boulder, CO: Sept 19, 2010

 $-H_2SO_4$ accounts for majority of growth of cluster containing just a few molecules -Critical cluster < 1 nm

Kuang, et al. (2012), Atmos. Chem. Phys. In press

Γ Values below 5 nm

Kuang, et al. (2012), Atmos. Chem. Phys. In press.

11

Number Distributions Measured in a Chamber ¹² Experiment July 13, 2010, U. Minnesota [SO₂]=9 ppb; RH=10%; no amines added intentionally

Minnesota-Augsburg-NCAR Research Team, Titcombe, PhD thesis, 2012