

ANALYSIS OF SIGNAL DETECTABILITY WITH NON-COHERENT AND SPECTRAL-BASED PROCESSING

JAMES B. MEAD PROSENSING INC.

PRACTICAL CLOUD RADAR SIGNAL PROCESSING OPTIONS

- Pulse-pair algorithm
 - Reflectivity determined from non-coherent power averages
 - Estimate of signal power at range gate $i: \langle S_i + N_i \rangle \langle N \rangle$
 - Velocity derived from phase of covariance of lag0 and lag1 samples
- Spectral processing
 - Power average of $M\,{\rm FFTs}$ of length N
 - Reflectivity, velocity and spectral width from first three moment of power spectrum

CONSTRAINTS

- Total number of samples available=*NM*:
 - FFT length=N
 - number of spectral averages=M
- Limited number of radar pulses
 - Scanning radar: on the order of NM=100 pulses
 - Fixed pointing: on the order of NM=10,000 pulses

OPTIMIZATION OF SPECTRAL PROCESSING

- Find optimal combination of N and M to provided highest probability of detection, P_d , for a given false alarm rate
- Compare to non-coherent P_d to determine which method yields best sensitivity

TYPICAL POWER SPECTRUM

after noise-subtraction

5 0 velocity (m/s)

-5

-10

April 2, 2012

10

5

FFT-LENGTH FOR OPTIMAL SIGNAL-TO-THRESHOLD RATIO

• Function of:

- Normalized spectral width
- FFT-weighting function loss factor, L_w

•
$$(L_w = \frac{2}{3} \text{ for Hanning window})$$

$$N^{opt} = \sqrt{\frac{2ln2}{\pi}} \cdot \frac{1}{L_w \sigma_n} = \sqrt{\frac{ln2}{2\pi}} \cdot \frac{F_p \lambda}{L_w \sigma_v}$$

SIMULATED AND THEORETICAL SIGNAL PROCESSING GAIN

NM=1024; $F_p=5.12$ kHz; $\lambda=.0086$; $\sigma_v=.3$ m/s; $P_{fa}=.05$

SPECTRAL-BASED SIGNAL PROCESSING GAIN: NM=20000

PROBABILITY OF DETECTION

- Probability of detection is a function of the following
 - Number of samples
 - Spectral width
 - PRF
 - Transmit frequency
 - false alarm rate
 - FFT length for spectral processing

PROBABILITY OF DETECTION FOR NON-COHERENT PROCESSING

SNR=-10 dB

P_D **FOR FFT-BASED PROCESSING** FOR FIXED SNR (256 SAMPLES)

P_D FOR FFT-BASED PROCESSING FOR FIXED SNR (20000 SAMPLES)

Bottom line: Benefit of FFT increases with increased dwell time

12

W-BAND REFLECTIVITY $P_{FA} = .01 NM = 10240$

\pril 2, 2012

13

W-BAND REFLECTIVITY ZOOMED IN ON WEAK CLOUD LAYER

14

SPECTRAL WIDTH

P_D FOR W-BAND 0.3 M/s spectral width; 10240 samples

WHAT NEXT?

- Next software release computes FFT moments and raw pulse-pair products simultaneously
 - Stores separate files for FFT and PP (doubles data volume)
- Recommendation for near-term
 - Gather X-band, Ka-band and W-band data at select times with both FFT and PP modes
 - Analysis data to confirm theoretical P_d model

PROCESSING OPTION 1: SELECT BEST ALGORITHM GIVEN SCAN TYPE

- Run pulse-pair algorithm when scanning
 - Benefit: frequency hopping to eliminate second trip echo
- Run FFT algorithm when fixed-pointing

OPTION 2: MERGED DATA PRODUCT WITH OPTIMAL SENSITIVITY, MINIMUM VARIANCE

- Run simultaneous FFT and pulse pair algorithms
- Near-real time program running on separate computer to merge FFT and pulse-pair data
- Use Kalman-filter concepts to optimally combine data
 - Requires additional theoretical study formulating biases and variances for spectral-based moments

P_D FOR W-BAND 0.3 M/s spectral width; 10240 samples

W-BAND REFLECTIVITY P_{FA}=.5 **ZOOMED IN ON WEAK CLOUD LAYER**

21