Improving Aerosol Wet Removal during the Transport to Highlatitudes in CAM5

Philip J. Rasch, <u>Hailong Wang</u>, Richard Easter, Minghuai Wang, Xiaohong Liu, Steve Ghan, Yun Qian, Jin-Ho Yoon, Po-Lun Ma, Vinoj Velu

Pacific Northwes NATIONAL LABORATORY

Outline/Summary slide

- An intro to CESM/CAM5. Some signatures of high latitude climate are quite reasonable (probably many other climate models).
- The standard model is not correctly characterizing arctic forcing from BC. (again, signatures are quite similar to other models)
- Systematic Biases that exist in BC:
 - Concentrations higher than obs at high altitudes
 - Concentrations lower than obs near surface
 - Poor seasonal cycle
- Contributing factors in our model, and improvement from:
 - Emissions
 - Scavenging (particularly by liquid clouds < 0C)</p>
 - Eddy transports/circulation
 - Resolution

Older versions of CCSM do "OK"

- Holland et al, 2006
- CCSM3 (CAM3 or 3.5)
- An example of one out of a dozen or so ensemble members

STROEVE ET AL .: ARCTIC ICE LOSS-FASTER THAN FORECAST

High Latitude Climate Change is a tough problem.

CAM - the Atmospheric Component of CCSM & CESM

Мос	Virtually every atmospheric process	M4 2010)	CESM1 (Jun 2010)
Atmos	has been revised/replaced with a goal	. (L26)	CAM5 (L30)
Boundary Turbul	of improving the physical	g-Boville	Bretherton-Park (09) Moist Turbulence
Shall Conve	representation.	ack	Park-Bretherton (09) Shallow Convection
Deep Cor	Particular focus on aerosols, and	I <mark>cFarlane</mark> et al.(08) ta <mark>sch (08)</mark>	Zhang-McFarlane Neale et al.(08) Richter-Rasch (08)
Clou Macroph	aerosol/cloud interactions	g <mark>et al.</mark> /avrus' mods.	Park-Bretherton-Rasch (10) Cloud Macrophysics
Stratif Microph	•3 mode 2-moment internally mixed aerosol (standard)	lK Moment	Morrison and Gettelman (08) Double Moment
Radiation	•7 mode internal/external mixtures	WRT	RRTMG lacono et al.(08) / Mitchell (08)
Aeros	"benchmark" (optional)	AM	Modal Aerosol Model (MAM) Liu & Ghan (2009)
Dynar		√ <mark>olume</mark>	Finite Volume
Oce	(Liu et al, 2011, GMD)	2 - <i>BGC</i>	POP2.2
Lan		4 - CN	CLM4
Sea	ice CSIM4 CSIM4	CICE	CICE

September Arctic Sea Ice

Simulated reduction of Arctic Ice similar to observations. Observation: Hadley Center (grey); NSIDC (SMMR+SSMI, black).

Pacific Northwest NATIONAL LABORATORY

CESM1/CAM5 and the climate record

Climate Sensitivity: 4.5K to 2xCO₂

6

Aerosol Indirect effect: -2W/m2 in Shortwave, +0.7 W/m2 in Longwave (Ghan et al, 2012)

CAM5 is quite accurate in monthly mean cloud amount compared to recent measurements when viewed as satellites do.

Kay et al, 2011,

High latitude summer clouds optically too thin

Winter clouds too extensive

Figure 4. Observed and COSP-simulated global (60 S to 60 N) annual mean cloud fractions.

BC Aerosols and their forcing:

The HIPPO measurements of BC vs AEROCOM Schwarz et al, 2010

Colors are Obs Black is AEROCOM model mean Grey is model range

Other comparisons (Koch et al) are consistent with these results

Aerosol transport to polar regions

Monthly mean BC surface concentrations (Wang et al. 2011, ACP)

NATIONAL LABORATORY

Model (CAM5) and Experimental setup

- 10-year run (1.9° x2.5°) with AR5 emissions
 - with 3-mode modal aerosols (MAM-3)
 - Improved liquid clouds in drop activation
 - Unified convective transport & wet removal of aerosols
 - Some other mods to reduce DJF high-latitude liquid clouds and wet removal efficiency
 - with a more complete 7-mode aerosols (MAM-7)
 - Slower BC aging
 - Year 2000 emissions vs. 1980 emissions
- PNNL-MMF (an aerosol multiscale modeling framework, with a 2-D cloud-resolving model embedded in CAM5 grids) 3-year run with the same year 2000 emissions

Pacific Northwest

Seasonal cycle of BC at polar sites

*See particularly, Garrett et al, 2011, ACP

12

Monthly mean BC surface concentrations

Monthly mean sulfate surface concentrations

DJF low and total cloud fraction (COSP): CAM5std vs. CAM5new

Reducing liquid cloud fraction has little impact on total cloud fraction.

Pacific Northwest NATIONAL LABORATORY

ANN low and total cloud fraction (COSP): CAM5std vs. CAM5new

DJF zonal mean BC concent

1980 Emissions Double the Arctic BC burden

Sensitivity tests with AR5 year 2000 vs. 1980 emissions

NATIONAL LABORATORY

Vertical profiles of BC: CAM5 vs. HIPPO1

Secondary activation in the new treatment of convective transport strongly reduces mid- to upper-tropospheric BC.

Proudly Operated by Battelle Since 1965

Pacific Northwest

NATIONAL LABORATORY

Summary:

- Many processes must be treated carefully to produce a reasonable representation of Arctic aerosols in CAM5
 - Emissions
 - Vertical transport at mid and low latitudes
 - Scavenging (wet removal), particularly at mid-latitudes, by liquid-phase processes
 - Aerosol aging and mixing (hygroscopicity)
 - Atmospheric dynamics and model resolution
- All these things must be "OK" before aerosol (BC in particular) climate impacts may be explored.

Impact of mods on LWP, precipitation, energy fluxes, and cloud forcing

Vertical profiles of BC: from other models (AeroCom intercomparison by Koch et al., 2009)

Proudly Operated by Battelle Since 1965

 F_w : surface wet deposition flux ($\mu g m^{-2} d^{-1}$)

- B_t : column burden of total (interstitial + cloud-borne) aerosol
- B_c : column burden of cloud-borne aerosol
- f : sub-grid liquid cloud fraction

 R_{w} : total wet removal rate

- I: cloud-borne removal
- II: activation fraction
- III: BC burden weighted liquid cloud fraction

Proudly Operated by Battelle Since 1965

F

Summary of sensitivity experiments and changes made to the standard CAM5

Experiment	modification/improvement
CTRL	An inconsistency involving the stratiform liquid cloud fractions used in the aerosol activation and in the cloud microphysics and macrophysics modules is removed
CONV	In additions to those in the CTRL, a unified treatment of aerosol vertical transport, activation, and removal in convective clouds is implemented.
CONV_sact	Same as CONV, but secondary aerosol activation is applied in the unified convective treatment in addition to the primary activation at cloud base.
CONV_FD	A freeze-dry scheme in cloud macrophysics is switched on to reduce liquid cloud fraction: $f=f_0 x max[0.15,min(1, q_v/q_{v0})]$, where f (f ₀) is liquid cloud fraction and the threshold water vapor mixing ration $q_{v0}=0.003 \text{ kg kg}^{-1}$.
CONV_2xFD	Same as CONV_FD, but with q_{v0} =0.006 kg kg ⁻¹ to further reduce liquid cloud fraction in a broader area.
CONV_SF	Same as CONV, but with the wet removal adjustment factors reduced.
CONV_m7	Same as CONV, but using a more complete 7-mode aerosol module instead of the standard 3-mode; moreover, a slow BC aging can be applied.
NEW_m3	Combined changes in CONV_FDnew and CONV_SFs; in addition, solubility factor for in- cloud wet removal by convective clouds is reduced from 1.0 to 0.5.
NEW_m3_sact	Same as NEW_m3, but secondary aerosol activation is applied.
NEW_m7	Same as NEW_m3, but using the 7-mode aerosol module and slow BC aging.
NEW_m7_80e	Same as NEW_m7, but using the AR5 1980 emission inventory

24

Zonal-mean BC burden, removal rate, ...

Vertical profiles of BC: CAM5 vs. observations (obs are from Koch et al., 2009)

Proudly Operated by Battelle Since 1965

26