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Significance 

• Inorganic and carbonaceous particles affect global 
radiative balance 

• Importance of aerosols on the hydrologic cycle 
– Primary particles impact on CCN formation 
– Influence droplet activation (composition vs. size) 
– Absorbing and non-absorbing particles affect cloud 

optical properties 
• Will characterize aerosol properties as inputs to 

models describing aerosol-cloud interactions, and 
aerosol direct and indirect impacts on climate 
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Overall Objective and Approach 

• Objective:  
– Improve understanding of the anthropogenic 

influence of light-absorbing aerosol on direct 
solar radiation, CCN, and aerosol abundance 

 
• Approach: 

– Combination of focused laboratory studies, 
modeling studies, and interpretation of field 
data 
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Specific Objectives 
• Generate fresh and aged aerosols: seed aerosol contains 

specific black or organic carbon material 
 

• Measure key climate-relevant properties: optical properties 
at high sub-saturated RHs and super-saturated RHs 
 

• Enhance a particle-resolved model: particle aging to 
predict spectral absorption and scattering 
 

• Determine climate-relevant classes of particles: important 
for use in models by integrating lab. and modeled results 
 

• Evaluate predictions: Compare results with field data from 
ASR fixed sites and field programs.  
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Aerosol Type and Laboratory Generation 

Aerosol Type Generation 

Light absorbing organic carbon Pyrolysis reactor: N2 carrier gas 

Black carbon Combustion reactor: Air carrier gas 

Watlow VC403A06A 650 W heaterH = 6”

2 ½ “ thick 9” x9” firebrick base 

N2 inlet and Bottom Thermocouple

Top Thermocouple

I.D. = 3”

O.D. = 7”

Watlow VC403A06A 650 W heaterH = 6”

2 ½ “ thick 9” x9” firebrick base 

N2 inlet and Bottom Thermocouple

Top Thermocouple

I.D. = 3”

O.D. = 7”

•  Pyrolysis and Combustion Reactor 

N2 or air at inlet with Thermocouple 5 



Aerosol Aging Apparatus 
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From Wood 
Pyrolysis and 

Combustion Reactor 



Laboratory Aerosol Detection (1): 
Optical Detection at Sub-Saturated RH 

Conditions 
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Brem, Bond, and Rood (9:25-10 AM, Wed., 
Aerosol Life Cycle PI Talks, Regency Ballroom) 



Laboratory Aerosol Detection (2): 
New CCN Measurements 
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From Mixing 
Chamber 

(1) (2) 



Example PartMC-MOSAIC Output: 
Urban Plume Scenario 
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Zaveri, Barnard, Easter, Riemer, and West (2010) JGR 



Isolate Climate-Relevant Classes 

• Identify important reactions or processes through simple 
experiments 
 

• Incorporate these reactions into PartMC-MOSAIC 
 

• Use PartMC-MOSIAC to determine which:  
• Properties are important in governing climate-relevant properties  
• Which aerosol types have those important properties 

 

• Design laboratory experiments that evaluate needed information 
 

• Perform the laboratory experiments to provide additional aerosol 
properties 
 

• Return the information to PartMC-MOSAIC for re-evaluation 
 

• Communicate the resulting important aerosol classifications to large-
scale modelers using bin and sectional models  
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Evaluation with ASR Efforts 

• Long-term measurements: ARM site 
• Three events for modeling, prioritizing where aerosol was observed at 

ground level taking advantage of ARM Aerosol observing system 
 

• Intensive field campaign: CARES 
• Measurements are ideal for constraining, evaluate, and improve our 

model simulations with PartMC-MOSAIC 
• Size-resolved CCN measurements are a priority for evaluating 

predictions of PartMC-MOSAIC.  
 

• Future work 
• Ganges Valley Aerosol Experiment (GVAX) campaign as an ideal test bed 

for our aerosol absorption apportionment measurements 
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Comments and Questions 
 
 
 

mrood@illinois.edu, yark@illinois.edu, nriemer@illinois.edu 
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Relationship Between this Project and 
Other ASR Efforts 
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Evolution of BC Absorption: 
Dependence on Wet Diameter 
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Zaveri, Barnard, Easter, Riemer, and West (2010) JGR 



Evolution of BC Absorption: 
Dependence on Dry Diameter  
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Zaveri, Barnard, Easter, Riemer, and West (2010) JGR 



Laboratory Aerosol Detection (1): 
Optical Detection at Sub-Saturated RH 

Conditions 
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