

# Signal post-processing and reflectivity calibration of the ARM UHF wind profilers

#### Frederic Tridon

Department of physics and Astronomy University of Leicester

Alessandro Battaglia, Pavlos Kollias and Edward Luke

www.le.ac.uk









#### Introduction

- Rain rate retrieval with ARM 35 GHz radars (Matrosov et al. 2005, 2006):
  - Close relation between rain attenuation and rain rate:
    a (dB km<sup>-1</sup>) = 0.28 R (mm h<sup>-1</sup>)
  - Attenuation estimation assuming vertically constant reflectivity within layers of 1 or 2 km
  - But, strong assumption, not valid in case of convection or wind shear



#### Introduction

- Non-attenuated reference reflectivity profile from a cm wavelength radar like 915 MHz wind profiler (WP)
- WP reconfigured in a vertically pointing mode for the observation of precipitation (Giangrande et al. 2009):
  - Increase of temporal and vertical resolution
  - Increase of Nyquist velocity
- WP has rarely been used for its reflectivity measurements → need of a careful quality control:
  - Estimation of noise floor
  - Quantification of saturation level
  - Absolute calibration of the instrument



#### ARM wind profiler

- Cycle in 8 s through two interlaced and complementary modes:
  - Long pulse mode (LM): 213 m resolution from 0.3 to 16 km
    Short pulse mode (SM): 125 m resolution from 0.3 to 9.5 km
- Objective: the two modes will be merged in order to combine their advantages in single profile, and provide the required reference reflectivity profile
- Large beam width of 9°: not optimal for precipitation measurements in case of important inhomogeneity



#### Dataset: SGP in April-May 2011

- Midlatitude Convective Clouds Experiment (GPM)
  The suit of instruments involved provide an unprecedented opportunity for the characterization of clouds and precipitation
- Specifically, 2DVD and NOAA profilers collocated with the wind profiler
- Whole dataset studied, but illustration with a single rain event



#### 20<sup>th</sup> May squall line Signal to Noise Ratio (SNR)





#### Better sensitivity of long mode:

- $\Box$  SNR<sub>LM</sub> > SNR<sub>SM</sub>
- □ SNR<sub>SM</sub> becomes undiscernible from noise at lower altitude



#### Routine estimation of noise level





Unattended strong variability of noise level in bright band and convection

□ Significant spectrum widening because of turbulence and variable vertical wind → noise floor not visible → overestimation



#### Noise estimation from clear air echoes





For each profile: mean noise level determined from estimation in clear air gates

Running average keeping natural variability of noise level



### Strong effect on SNR



Overestimation of noise level -> underestimation of SNR mostly in bright band and convective cores

Zoom: the underestimation can be very large (20 dB)
 Precipitation features were totally missed



#### Effect visible on 2DFD: no saturation





 Distributions of LM (and surprisingly SM) are bounded by two thresholds increasing proportionally to r<sup>2</sup>: noise and saturation levels
 <u>Saturation feature was actually due to bad noise level</u>



## Calibration

Comparison of WP measurements in lowest gates with reflectivity computed from the DSD measured by a collocated 2DVD

Method known to work well (Gage et al., 2000 ; Williams et al. 2005), 2 factors affect the goodness:

mismatch in sampling volume size

- height/time differences between the samples
- Lowest reliable measurements of LM at 750 m:
  - SM calibrated with 2DVD comparison
  - LM calibrated with SM inter-comparison



#### Calibration of short mode



Difference Z<sub>2DVD</sub>-SNR<sub>SM</sub> in dB normally distributed
 Difference and confidence intervals by Z<sub>2DVD</sub> intervals:
 □ Bragg scattering up to 25 dBZ
 □ 25 < Z < 50 dBZ → calibration constant of 10 dB</li>
 □ σ = 2 dB (sampling volume, height and principle)



#### Inter-calibration of long mode



Difference SNR<sub>SM</sub>-SNR<sub>LM</sub> between 1 and 5 km:
 □ very good correspondence with σ = 1 dB
 □ comparison possible in the Bragg scattering range
 □ Inter-calibration constant: 15.6 dB → absolute C<sub>LM</sub> = -5.9 dB



#### **Calibrated reflectivities**





Z<sub>SM</sub> and Z<sub>LM</sub> correspond well, but some differences:
 Z<sub>SM</sub> fall in noise level at low height (about 6 km)
 bright band better resolved by higher resolution of SM
 Merging of modes to combine the advantages of both



#### Merging of the modes: methodology



An interpolation of Z<sub>LM</sub> at SM height resolution would only produce a smoother version of Z<sub>SM</sub>

- The merged product is defined as:
  - $\Box$  equal to  $Z_{SM}$  when  $SNR_{SM} > 5 dB$
  - $\Box$  Z<sub>LM</sub> otherwise



#### Merging of the modes: results



Merged Z has the high resolution of SM at low and medium range and long range of LM

The maximum height at which Z<sub>SM</sub> can be used is varying and can be as high as 8 km in convective portion



### Conclusions

- The reconfiguration of WP made them adapted to the measurements of precipitation
- Their wide beam is not optimal and can lead to a significant widening of spectra → overestimation of noise level → underestimation of SNR
- The proposed method makes use of the noise estimates from clear air gates and leads to a considerable improvement of SNR in strong portions of the signal



#### Conclusions

- Good comparison of WP measurements with 2DVD computed reflectivity → calibration of the WP
- Method proposed to merge the two modes and keep their both advantages: high resolution and long range

#### Future work

- Differential attenuation between K<sub>a</sub> and WP
- Application of the dual frequency technique for rain rate retrieval



#### Thanks for your attention



#### Future work





# Application of the dual frequency technique for:

- rain studies
- bright band studies
- Ice studies
- Radome attenuation estimation





#### 35 GHz radar calibration?



#### 10 dB difference due to non Rayleigh effect in ice cloud?

