Welcome to FASTER Breakouts

Yangang Liu
(lyg@bnl.gov)

 FASTER (Fast-physics System
TEstbed and Research) is a multi-
Institutional project funded by ESM to
accelerate/improve evaluation of fast
physics parameterization by utilizing
ARM measurements and integrating
models with observation and models
of different types/scales.

FASTER Pyramid

* Project gateway:
http://www.bnl.gov/faster
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Facility/Model Development

Next Generation FASTER Testbed
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GPU-Based CRM-Testbed /’
WRF-FASTER
as CRMILES ~_ g
all the €0 i Working with GPU experts at BNL to convert
puressing W CPU-based WRF-FASTER to GPU-based one
fr fure permitting faster and long-term CRM/LES
ature-

simulations in the FASTER testbed.



Science and Publications

e A total of 38* manuscripts
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e 16 FASTER-related posters at this ASR meeting

e Last ASR statistics year ago
28 manuscripts: 5 published; 4 in press; 15 submitted; 4* to be submitted



Major Events since last ASR & Near Future

o 23-24 Nov2012 team meeting at GISS
* Dec 2012 AGU fast physics sessions

e 5Mar2013 team-wide telecon

« Progress report (by end of April)
* Project review (this fall?)

« RACORO focus

-- More LES participation (DAM and SAM)

-- CRM simulations over SGP domain

-- Iterate, analyze, synthesize, and submit papers

 Special issue (JGR?) on fast physics



Topics for Discussion

* Model-specific issues, such as setup

* Model integration (LES, CRM, Nested-WRF,
FASTER-DA, NWP, SCM)

« How to best use aircraft measurements
* Entrainment as a potential evaluation variable
 Aerosol properties as evaluation variables

» Related issues: type partition; Point-to-domain
upscaling; subgrid variability and scale-dependence

As always please contact me anytime to share your ideas!
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http://www.jifresse.ucla.edu/default.htm

Contributions to ARM/ASR

® ARM data products (more in Toto’s talk)
-- Initial code for PBL height VAP

-- RACORO/Aerosol

-- CRF/cloud albedo/cloud fraction

-- Stratiform-convection partition

-- CAPE/CIN

-- Entrainment rate

® Multiscale data structure

® Evaluation/diagnostics tools

® Set of test cases idealized from FASTER
studies

® Hydrometeor and multiscale forcing




Topics for Discussion

* Model integration

* How to use relationships to address coupling and
tuning issues

* Entrainment rate as another potential evaluation
variable

* How to capitalize on the new ARM measurements
 Generic issues: type partition; Point-to-domain

upscaling; subgrid variability and scale-dependence
As always please contact me anytime you have ideas to share!
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Additional Science Highligh’rs

® Aerosol-cloud interaction (de Boer et al talk, 1:45 pm, Wed)

® CRM/LES-TWP-ICE (Fridlind talk, 9:15 am, Thursday)

® Entrainment-rate (Lu et al poster and talk this evening)

® Cloud top and cloud base evaluation (Wu et al. poster)

® Exploration of WRF setup influnces (posters by Lin et al, and Endo)
® Three moment-based parameterization (poster by Liu et al)

® Visualization and evaluation system (poster by Toto et al.)

® Microphysics sensitivity with WRF (papers by Van Weverberg et al)



Evaluation of Aerosol Cloud Interactions

Overview:

- Observations from ARM IOPs are being S gl L S
utilized to evaluate the interactions between
clouds and aerosols in the NASA GISS ModelE.

- Parameterizations of droplet activation,

Campaigns Utilized

droplet effective radius, and relationships il T e R R
between surface aerosol and cloud properties Gl e —SReH
are tested. 10’ RACORO
Highlights: L
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- Simulated droplet activation generally L
follows observations.
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- Effective radius parameterizations result in N, osor (€M)
significantly different values — the impact of Droplet Activation
these differences on climate are currently Reference:

being evaluated.
de Boer, G., S. Menon, S.E. Bauer, T. Toto, A. Vogelmann and M.

Cribb (2012): Evaluation of aerosol-cloud interactions in the GISS
ModelE using ARM Observations, Atmos. Phys. Chem., in
preparation



SCM-NWP Intergration
SCM forecast skill at SGP 2004-2009
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Evaluation of Surface Flux Variations

lation

Seasonal Var

Ion

1at

| Var

Diurna

19

r T 2 T S
L 1= 1- 4=
! e 1< 1 1=
L 1s 1< | S
5 E 4 B -° - E )
.
©
3 -4~ o -~ - - 7%
=
o
E=
L Je< 3 q« 3 40 5
=
L e 3 Ju 3 40
L 4« L d< - 4
L 4o L d40 " 1
- - N
3 E Iy 3 -c
s S e
)
. . . B . o
. L - . Q S =] =] =] =] Q =)
wn — n o (=) o 0 o 0 o T Tl o
(s/w) A112015A uONILL UBSN AJYIUOW (QU/) XNI- TEBH BIQISUSS UBBI AILUOI (Qu/An) Xnid YeaH 1uare uealN Alyruop
o o o
~ N N
i 1K [ & T 1K
L o |} 1
L . ,olo. ] I
i 18 [ S r 12
! 1=f } st 135
B
< : =
. >
. ~ b Jow
L E Hn. l_ — m
j o
! o | o
i 15: = SE
P | =
| 1o L o} 1P
| 1o L o } o
| 1. L < } 1<«
| N L ~  F N
< o
L) 2
. . o . ° s . — °
d = ) ° © © © 9 © © o© 9o o o S o o S o ©o o
4 - o o o o o o o o o o o o o o o o
(s/w) An120joA UONDLIH UBSN A|INOH-1WAS (ZW/A) Xn|d TesH 8|qisues uedN ALINOH-IWes (/M) xnid yesH Jueye uea AUnoH-1was



Tuning and Compensating Errors — Evidence

19 IPCC AR4 GCM Results
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These results demonstrate that “tuning’” parameterizations to
observations lead to serious compensating errors, even distinct
cloud regimes; we should derive parameterizations from first
principles and reduce the number of tunable parameters as much
as possible, and meantime look for smart objective “tuning” !!



Compensating Errors in Precipitation
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Crucial message: large scale forcing controls SCM total
precipitation more, however, from different compensating errors
In different GCMs >> convection trigger vs strength?



Multiple Correlation Evaluation ?
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Dependence of Statistical Measures on
Temporal Averaging Scales
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(Near-) Surface Meteorology-PBL-Cloud Properties Coupling?
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Standard Deviation
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Standard Deviation vs Mean (monthly)
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The standard deviation and mean
of the cloud properties :

»QObs: overall largest mean/std for
the cloud properties

»ERA-interim: overall second
largest mean/std for cloud fraction,
and second largest std for SRCF
and cloud albedo

»R1/R2: overall similar mean/std,

except R2 cloud fraction (albedo)

std is slightly (significantly) larger
than R1

111 Observations show the
largest mean/std !!!



Morrison vs. Milbrandt Microphysics Schemes

Mean Surface I5recipitation (mm) ' (mm)
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Improving conversion
parameterizations
(K. Van Weverberg)

Peak precipitation: drop breakup
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Mean precipitation: graupel sublimatio

 Morrison: Large return of graupel to vapo

= Low Precipitation Efficiency
 Milbrandt: No return of graupel to vapor
—> High Precipitation Efficienc



Long-term impact of aerosols on cloud top temperature
Cloud thickness and rainfall frequency
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Liquid Water Content (gm™)

Next IOP to Focus: RACORO ?

Focus: Continental boundary layer liquid water clouds

RACORO

Routine
ARM Aerial Facility (AAF)
Clouds with Low Optical
Water Depths (CLOWD)
Optical
Radiative
Observations




Cloud Albedo, Cloud Fraction and
Their Relationships: Physics and Tool

IPCC AR4 GCM Results
L L s e Black curves — observations

Color schemes — GCMs
Green = total water path;
Blue = surface radiation;
Red = TOA radiation

Positive correlation, esp. for
cloud fraction between 0.2
and 0.9

SCM shows either physics
and/or overlap schemes lead
to similar results

Theoretical demonstration

How about NWP results?

Compensating errors &
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More Evaluation Variables

* Radiation and corresponding effective cloud albedo
* Cloud fraction and cloud albedo
* Precipitation

* Optical depth, LWP/IWP, other macroscopic properties?
* Water vapor

-- Surface turbulent fluxes

-- Vertical velocity

-- Aerosol

-- LWC, IWC, or simulators (e.g., cloud radar)
-- CAPE and CIN

-- Effective radius

-- Cloud droplet concentration

-- Spectral dispersion

-- Other model outputs ?



Evaluation Approaches

* Temperature as vertical coordinate

* Regime based on 500 mb vertical velocity

* Regime based on precipitation

* More general regime classification presented

* Coupling analysis — albedo-fraction relationship

* QOther approaches?



Some Generic FASTER Issues

® Consistency of Partition between stratiform-convective clouds
and precipitation between models and observations, and among
different models of various scales (e.g., GCM vs. CRM)

® Consistency of cloud definition (e.g., including precipitation
particles or not) between models and observations and among
models of various scales (e.g., GCM vs. CRM)

® Scale mismatch in evaluation of model domain results against
ARM pencil-like measurements

®Experiment design to identify model errors

March 15, 2010, FASTER Breakout, ASR Annual Meeting



Cloud type partition is key to intermodel
differences in both SCMs and CRMs

60 60

ey Scu Total . . Total
— =
S 40 - S 40
=
£ E
S 20 > = 20 —
S A S
0 s - 31T 0§ 0 T ¥ 07 0 71 0 T 1T P 1T rrrir1ritri1i1riri1umi
18 00 06 12 =~ == == == == 00 18 00 06 12 18 00 06 12 18 00
- MAR 2 Convective o - MAR 2 MAR3
scu (¢) CRM Convective
T 40 F -
= =
E E K
o 20 - o 20 - /
o o /
< A = f
[= % [ =18 e
18 00 06 12 18 00 06 12 18 00 18 00 06 12 18 00 06 12 18 00
MAR 2 MAR 3 MAR2 MAR3
60 60
sCm Stratiform CRm Stratiform
- " g
1=
£ £
@ 20 a 20 O
@ o // i
& & 7 N
D"’ DIIIIIIIIIIIIIIIIII
18 00 06 12 18 00 06 12 18 00 18 00 06 12 18 00 06 12 18 00
MAR 2 MARZ3 MAR 2 MAR3

Precipitation rate vs. Time
(Adapted from Xie et al., 2005, JGR, Special issue on March 2000 Cloud I10P)



Convective and stratiform areas
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Comparison of Data at Different Scales

1. Taylor Hypothesis L
= . . U
k=
U Qi' Small Variation o < 0.5 Mean
_ Temporal average = Spatial average
2. Ergodic hypothesis T*

Explore detailed scale-dependence using CRMs:

| | | Increasing averaging scale | | S
CFgrid,d=0 NWPgrid GCM grid, d*
For a given averaging time




Observation-Model Comparison Issues
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Two generic issues with evaluation of model results against ARM point-like measurements:
Consistency of cloud definition in observation and models; scale-mismatch between point
measurements and model domain >> a possible way to deal with these issues via CRMs.



Pressure height (mb)
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Pressure height (mb)

ARSCL vs. CF 6rid Cloud Fraction
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= Example: WRF High Clouds
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Better statistics:

Evaluation of the monthly
mean height of the
maximum cloud fraction
in the lowest 4 km at 18
UTC against ARSCL for
the perniod 1999-2001:

*CY31R1 overestimates
this height, reflecting that
it overestimates the
occurrence of shallow
cumulus outflow at the
fop of the PBL (“anvils”)

* EDMF-DualM agrees
better with observations,
reflecting that for fair-
weather cumulus it
typically puts the
maximum cloud fraction
at cloud base

Height of maximum cloud fraction in lowest 4km
mmeans 1999-2001 at 18 UTC
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Better statistics:

Evaluation of the monthly
mean cloud fraction at
10km height at 18 UTC
against ARSCL for the
period 1999-2001:

* The March 2000 result
is representative of the
longer-term

* The supersaturation
function brings a
statistically significant
improvement

* Not accounting for
super-saturation leads to
too much high cloud
occurrence
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Surface-Based Cloud Albedo
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New Surface-Based Method
for Measuring Cloud Albedo

Hourly data from 1997 to 2009 at SGP

Cloud Albedo
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The differences in cloud albedo and cloud fraction seem

similar between GOES-based and surface-based Results, why?
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Work Strategy and Plan

® Operation guided by ARM data quality/availability; research
associated with operation

® Warm-up phase, streamlining coordination of different
components and focusing on March 2000 Cloud I10OP at SGP

® |OP phase, focusing on 10Ps with high quality ARM data
® Continuous phase at SGP

® Continuous phase at the other ARM sites

» Research is organized around, and progress with operational phases.

Better results or new findings are expected as project progresses and accumulates
more cases, more cloud types, weather regimes, ever better statistics .... Exceptions’
* New strategy in the future: Science-drives operation and research or hybrid?



NWP-Testbed Results from Hogan/O'Conner
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Figure 3. Comparison of the seasonal composites
of cloud fraction (a) dernved from observations at
the ARM SGP site for the years 2004 to 2009
with the walues held in (b) the ECMWEF model,
(c) the NCEP model and (d) the global version of
the Met Office model.




Spring/summer cloud fraction at SGFP:

EDMFE-Duall has its low-level maximum at a lower height compared to ERA Interim (CY31R1)
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March 2000
monthly mean at 18 UTC

Sensitivity test on ice super-saturation:
it reduces the cloud fraction by about
10% at 10km height

This is in agreement with the GCM
results

Height [km]

According to ARSCL this is an
improvement (at least for this month)

Also note: the CY31R1 SCM
reproduces the cloud structure of ERA
Interim (CY31R1 physics) reasonably
well, even when driven by an
independent forcings dataset
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Multiscale Data Assimilation System

(Lead by UCLA/JPL, Z. Li)

,,,,,,,,

,,,,,,,

,,,,,,

WRF
GSlI

Land Surface

l

:"j;j 7777777 Multi-Scale

o j GSI = Grid Space Interpolation, NCEP-3DVAR scheme
,‘ Multi-Scale GSI = GSI + JPL Multiscale DA System

WRF GSI has been implemented for a three-domain nesting configuration

ARM Balloon-Borne Sounding (SONDE) profiles have been assimilated
Conventional and satellite radiance data processed by NCEP have been assimilated
Three cases investigated( 2-5 March; 15-17 March 2000; 25-28 July2007)
Temperature/moisture/wind profiles improved significantly;

Cloud profiles and precipitation improved somewhat




Impacts of Data Assimilation on Meteorological Profiles
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-200 f 1 200
400 f . 400 f
-600 f 1 -600 |
-800 f . -800 f
~1000 : : : -1000 ' . . .
-10 5 0 5 10 0 2 4 6 8 10

Obs
=i ||
(=72

) ") o ') Q ') Q Q o Q o
) ") o '] Q a Q Q 0 Q 0

Data assimilation leads to significant improvement
in profiles of the common meteorological variables at the SGP CF.



ImEact of Data Assimilation on Domain-PreciEitation
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Data assimilation leads to significant improvement
In domain-averaged precipitation. But, not in clouds (next)



Impact of Data Assimilation on Cloud Fraction

CLDFRA (Sim) ARSCL_CLD (Obs)
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Emerging Patterns from SCMs and NWPs?

Under-simulated middle and low clouds & over-simulated upper clouds?
— Can we reduce this bias with improved fine scale vertical velocities?

— Can we fix high-cloud issues by considering/improving ice
supersaturation?

The problems of sensible and latent heat fluxes
— What causes the problem, temperature and water vapor mixing ratio?
— What'’s the impact on model results?



Qoeratlons

< CIRPAS Twin Otter, based near SGP
— 24 January to 29 June 2009
— Long-term observations good for statistics (incl. seasonal var.)

— Needed simplified operation paradigm, compared to an |IOP
- Standardized flight patterns (Cloud triangles w/ spirals over SGP)

— 1st|ong-term aircraft in situ sampling of cloud

< 59 Research flights (259 hrs)
— 31 cloud flights
— 46 over SGP
— 46 with EOS overpass

< “Non-Cloud” Flights
— Aerosol and CCN characterization
— Boundary layer turbulence
— Surface albedo mapping
— Radiometer tilt characterization

< King Air collaborative flights 2-26 June (HSRL, RSP)
— 15 flights (11 cloud flights; 8 of which over SGP)

Jason Tomlmson'



More Discussions

-- Data integration
* Aerosol data
* Nexrad data

-- Ensemble of large scale forcing data from, e.g., reanalysis
-- Test development

* SCM-and NWP-testbed integration

* Web-based GDFL, GISS, ECMWF SCMs

-- Coordination and team-work |

el G FDL &

. ; g S S University of
o BROOKHAVEN ; | Q] Bt



http://www.jifresse.ucla.edu/default.htm

ESM FASTER:

Improving the representation of cloud macrophysics in
the RACMO and the IFS

A short description of the models

Preliminary SCM results for 1999-2001 at ARM SGP. Two research topics:

* Evaluation of the impacts of the ice super-saturation function on high cloud
occurrence

* Evaluation of the impact of the new EDMF-Dualld boundary layer scheme on
the vertical structure of low-level clouds

Roel Neggers FPeter Baas
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o
z
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DOE ASR meeting, 15-18 March 2010



- Quick Summary of ACRF Data

1994
1995
1996

1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009

BN sep

TWP

NSA

Oliktok P

uuuuuuuu

nnnnnnnn

.......

I\/Iace;s cloud and
rad properties

CLD/RAD

Microbase

Other Data Activities:
Large-Scale forcing,

CMBE, & RIPBE. See
Xie’s & Jensen’s talks



Eight Tasks and Major Fast Processes

=HONMENS

- Fast-physics testbed (NWP-

testbed & SCM-testbed)

o A suite of high-resolution
model simulations

» Model evaluation against
measurements

-- Model errors

e Evaluation metrics

-- Statistical measures
-- Forecast skill

e Data assimilation

e Full GCM assessment
 Data integration

Major Fast Processes

* Microphysics

-- Warm clouds

-- Ice clouds

-- Mixed phase clouds

-- Mono vs. multi-moment

. schemes

Evaluation approach @8 Aerosol-cloud interactions
‘ » Radiation

» Shallow convection

» Deep convection
Evaluation variables B =it lalaaEaivApde= glan =l

» Boundary processes
- * Subgrid turbulence

e Cloud fraction

 Land-surface-atmosphere
Interaction




"ARM-Like Innovation” in Model Evaluation

Now is the time

 ARM has made continuous, comprehensive, decade-long measurements,
permitting better statistics, more cloud types, weather regimes ....

« SCM/CRMY/LES approaches have been well developed and tested by
ARM scientists and others.

 Asmaller scale-SCM-testbed has been recently established by Dr. Neggers
et al. at Netherlands

o Usefulness of NWP-testbed has been demonstrated by Cloudnet project.

ARM-Like Innovation

Ackerman and Stokes on ARM’s Innovation (Physics Today, 2003): “ .... Even
before ARM, scientists had already made such efforts in field campaigns that
lasted for a month or two. ARM’s unique innovation was to perform the
measurements continuously for a decade or more ....”

To paraphrase: .... This project’s unique innovation is to perform the evaluation
continuously for a decade or more and in a more focused way .... better statistics,
regime-based evaluation, system-based evaluation ....




The sheer complexity of the problem are
certainly a reason for the slow progress.

Complexity:

e Scientific GCM/SCM |
- 4M (multibody; multitype: w

multiscale; multiD) WRF/ Data
-- Conceptual CRM/LES
-- Numerical ,

-- Coupling
* Engineering Parameter. Observation
-- Inter-field interactions

-- Para. imple. in GCMs

Randall et al. (BAMS, 2003): “A model-evaluation project is complicated in at least two
distinctive ways. The technical complexities are obvious and daunting: Data must
collected and analyzed, .... An additional and equally complex task is to foster
communication and fruit interactions ....”.

Some even considers the complexity as a valley of death for GCMs.



Model Domain Size

Complexity Seen in Model Hierarchy
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Poorly understood 4M interactions/feedbacks

DNS = Direct
Numerical
Simulation

LES = Large Eddy
Simulation

CRM = Cloud-
Resolving Model

WRF = Weather
Research and
Forecast Model

GCM = Global
Climate Model

RCM = Regional
Climate Model

GCRM = Global
CRM

NWP = Numerical
Weather Forecasting

SCM = Single
Column Model



FASTER Team

BCC (10 institutions and 21 scientists) fovestisate: Institution

YW angang Lin BINL
- - Stephen Schwart= BINL
- TAamren Wiiscombe BENL/ Goddard
Hub Core Extended Fobert MeGraw BN
TWayin Lin BEML
Andrew WVogelmanmn BINL
IhMichael Jensemn BINL
SBU Richard "Wagener BML
Dong Huang BIWNL
C U el W BINL
Surabi Menon ILEINL
Sunszanna Bauer T
G I SS MMimghua Zhang SEBLT
hMarat Khairoutdinow SBLT
Anthony Del Gendo GISS
Avnn Fridlind GISS
W onghbua Chen CLT
G F D L Leo Domner GFIDIL
Zhijan L LA MJPL
Goddard Fobin Hogan TR
Roel Neggers KINhAT

Core Institutions are adjacent to BNL and operate three major US GCMs;
many team members participate in ASR or related research, and has strong
theoretical background on top of other areas of expertise essential for success



Concept of Fast-Physics Testbed
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High-Resolution Modeling Activities

High-Resolution Modeling

WRF- WRF- WRF- WRF-CAM
CRMILES | Texas A&M Nested WRF-ARW | WRF-VAR

Discern Provide Assist physical Develop para- “Upgrade testbed
error sources synthetic data , understanding meterization L to future-GCM




Near-Term Plan

® Digesting the results and writing papers

® Continue current activities

® Summarize warm-up and decide next focused SGP IOP (ROCORO)
® Integrate SCM-testbed and NWP-testbed

® Meeting at GISS next Wed, 10 Nov 2010.

® Fast-physics section at AGU (over 50 abstracts, growing and exciting)



Project Hardware

Archive . Website BNL

ARM iNC —
XDC “omputing . Gateway Other
]

Server2: Facility
FASTER?2

Facility Serverl:
FASTER 1

Testbed Hardware Configuration



Relationship between Cloud Albedo and Cloud
Fraction in Observations and GCMs

0'8 I 1 1 I 1 1 I 1 1 I I 1 I I 1
g Th ree year (1999-200 1) hou rly data | —Sur:lfacct Obs lSCAl![S(StuIldul'Id] —_—— SC_AMSI{R&AILCIOIU.]
— —Satellite Obs ——SCAM4(Standard) — — SCAM4({Random)
0.7 - SCAMS(Standard) —— S?AMS{F.a.ndonlj

* Cloud albedo and cloud fraction
are clearly related to each other

0.6

0.5

» Observational difference is
much less than inter-model difference

0.4

Cloud Albedo

A AAA
0.3 STy I-r'-__ ! 1-"|.,

« Model results can be improved by 02 i

-- changing parameterizations of
specific fast processes (solid lines );
or by

Cloud Fraction

-- Underlying physics for albedo-fraction relation ?

- using different assumptions of - Underlying parameterizations for model

vertical cloud overlap (dashed lines) difference ? o o
-- Self-consistency of individual parameterizations

and relationships to cloud overlap assumptions?



Four Levels of Model Evaluation

Subgrid Processes

Offline Evaluation

Direct no process interactions

SCM Evaluation
<«
- =
With process interactions
but no column interactions

Full GCM Evaluation . NWP Evaluation

<«
T — Better Resolution
Full interactions but propagation _
of parameterization errors HRM Evaluation
<« —

Best Resolution &
Subgrid variability



Three Levels of Parameterizations

Subgrid Processes

Mean-field parameterization

Microphysics

Resolved slaves subgrid

Radiation
Stochastic parameterization
<«
Turbulence ——————————)>
Subgrid affects resolved
Convection
PBL Process Unified parameterization
s |
>
Surface-Process Interacting subgrid processes

(self-consistency issues)

Resolved Grid
Variables

Parameterization is not just a practical necessity, but a deep theoretical
underpinning of scale-interactions within the multiscale system in question.




Large uncertainty in cloud microphysical retrievals
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——relative difference of LWC
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) - seven year averages of the University
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Large Spread in Cloud Fraction Observations

Lines: monthly climatology
solid: surface or 0.5° satellite
dashed: 2.5° satellite
dotted: the entire SGP domain

Characteristics:

» Difference: largest in Winter and
Spring, smallest in Summer

» Surface measurements smaller than
satellite measurements (except GOES)

»Not much sensitivity to spatial scale
change (except 0.5° PATMOS-x with a
phase problem)

(W. Wu)



Comparison of Forcing-WRF with KNMI-LES
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Three Years (1999-2001) SCM Runs at SGP
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NWP Highlight: Relationship between Biases

Monthly Data
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effective cloud albedo via parameterizations and couplings
(W. Wu)



Surface Fluxes
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SGP Effective Cloud Albedo and
Observation-Reanalysis Comparison

 Long-term radiation —
Diurnal Annual Inter-annual

measurement (Long’s VAP) | |
e Minimizing non- o \ T eEmmeR
cloud effects g o
» Effective cloud i 03
albedo (Betts, 2009): &
L 025+
o = |:clear N |:all L
e T o2f . - |

|:clear 5
* Derived long-term O o) —F—
cloud effective albedo o [ | _
data since 1997 & B 2 4 6 8 10 12 56 00 02 04 06 08

Local Hour Month Year

This diagram compares diurnal, annual, and inter-annual variations of effective
albedo derived from radiation measurements (red), NCEP/DOE reanalysis (blue),
and NCEP/NCAR reanalysis (green). Both reanalyses capture the inter-annual
pattern well, but strongly underestimate. NCEP/DOE catches the annual variation
better than NCEP/NCAR. ===ssp- cloud fraction, albedo, and NWP usefulness



Version 1.0 Web-Based FASTER Testbed

http://www.bnl.gov/ems/

BML: Departments Science ESSE&H MNewsroom Administration Visitors Directory

search

[ =1
Find People FASTER (FAST-PHYSICS SYSTEM TESTBED AND RESEARCH) Project

Brookhaven Climate Consortium

Project Owverview

RSS E

The FASTER project arises from the proposal "Continuous Evaluation of Fast Processes in
Climate Models Using ABRM Measurements™ funded by the Department of Energy's Earth
System Modeling (ESM) program. The overarching goal of this project is to narrow

Assessment Metrics | uncertainty and biases in GCMs by utilizing continuous ARM measurements to enhance and

Observations [ accelerate evaluation and improvement of parameterizations of fast processes in GCMs

SCM Testbed B mmvolving clouds, precipitation, and aerosols, with six pnumary olbjectives:

NWE Testbed L 1. Construction of a Fast-Physics Testbed to rapidly evaluate fast physics in GCMs

CRM/LES Simulations B by comparing model results against continuous long-term cloud observations made

Multiscale Modeling [ by the ARM program.

e 2. Execution of a suite of CRM simulations for selected periods/cases to augment

WRFing B the Fast-Physics Testbed. We will run WRFs with different parameterizations as

Arrhinres - CRMs, CRMs with bin-microphysics, and multi-scale modeling framework.

Nizialia s - 2. Continuous evaluation of model performance to identify and determine model
= errors by comparnng the NWP and SCM results against continuous ARM

Participants observations, and to each other. The long-time data record at the ARM sites (e.g.,

Documents SGP) permits evaluation of wvarious statistical properties (e.g., PDFs) and recurring

User Forum cloud regimes.

Report Problems 4. Examination and improvement of parameterizations of key cloud

FAQ pmoess_esfprcperties {e.g._, convection, microphysics and aerosol-cloud

interactions), thus narrowing the range of treatments of fast processes that exert
Contact Us strong influences on model sensitivity so as to better constrain climate sensitivity.
Other Links 5. Assessment and development of metrics of model performance. Different

metrics will be applied and tested in the evaluation, and new metrics will be
explored. Special care will be taken to address the issue of scale-mismatch
between observations and models.

Can't View PDFs?

6. Incorporation of newly acquired knowledge on parameterizations into the full
participating GCMs to evaluate the impact of the refined parametenzations on GCM
and ascertain the improvement in the representation of fast physics in the GCMs.



Configuration of WRF as a CRM
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Cloud Fraction and Observation-
Reanalysis Comparison at SGP

Diurnal Annual Inter-Annual
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This diagram shows variations of cloud fraction are similar effective cloud albedo.
Both reanalyses capture the inter-annual pattern well, but strongly underestimate.

NCEP/DOE catches the annual variation better than NCEP/NCAR. >>( cloud a;lbedo
Wei Wu



Inter-Annual Variations of SGP Cloud Fraction Observations

B e Lines: inter-annual variations
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Effective Cloud Albedo and Observation-
Reanalysis Comparison at SGP

 Long-term radiation —
Diurnal Annual Inter-annual

measurement
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This diagram compares diurnal, annual, and inter-annual variations of effective
albedo derived from radiation measurements (red), NCEP/DOE reanalysis (blue),
and NCEP/NCAR reanalysis (green). Both reanalyses capture the inter-annual
pattern well, but strongly underestimate. NCEP/DOE catches the annual variation
better than NCEP/NCAR. ===ssp- cloud fraction, albedo, and NWP usefulness



Valley of Death or Mountain of Life

Va”ey of Death Mountain of Life
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Rain initiation has been an outstanding The new theory considers rain initiation as a

puzzle with two fundamental problems statistical barrier crossing process. Only

of spectral broadening & formation of those “RARE SEED” drops crossing over
embryonic raindrop the barrier grow into raindrops.

Parameterization problem in GCMs is similar:

Issues well recognized, efforts made, & progress realized;
now is the time to for us to be a SEED that accelerate and crosses over the barrier !




Acceleration of progress and barrier-
crossing demands more focused effort

o
k)

~* History reveals to us a process of multiple evaluation
= approaches and increasingly focused efforts: '

 Brute force full-GCM (slow) -- Focused by IPCC
» GCM in forecast mode (faster than IPCC) -- Focused by CAPT

* SCM enhanced with CRM/LES modeling (fast and easily rerun) --
Used in ARM/GEWEX; Focused by KNMI SCM-testbed

 Available NWP forecast, analysis and reanalysis (NWP-testbed; fast
but not easy to rerun) — Focused by European Cloudnet project

There are less focused efforts in SCM-testbed and NWP-testbed in
US, and FASTER is to fill this critical need to build a Fast-Physics
Testbed by synthesizing SCM-testbed and NWP-testbed approaches
and enhancing them via a suite of other activities, and perform

continuous model evaluation against comprehensive, long-term ASR
measurements.




Goal and Objectives

One Goal

Fully utilize continuous long-term ARM measurements to
enhance/accelerate evaluation and improvement of
parameterizations of cloud-related fast processes and narrow GCM
uncertainties and biases.

Six Objectives

» Construction of a fast-physics testbed

 Execution of a suite of CRM/LES simulations
 Evaluation of model performance

« Examination and improvement of parameterizations

» Assessment and development of evaluation metrics

* Incorporation of acquired knowledge into the full GCMs



Scientific Management
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External Advisory Committee (EAC)
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(3) Model Evaluation

(5) Theory &

(1) Fast-Physics (8) Data Infusion (Jensen/ (2) CRM (6) Data Assimilation (4) Metrics (7) Full
Testbed Volgelmann/Wagner) Suite (Li) (McGraw) GCMs
NWP-testbed || SCM-testbed || GISs-CRM SAM/MMF WRFs GroL || G!SS (Del NCAR
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Parameterization

Note that the flow chart is for illustrative purpose; all scientists work closely together, with focused
areas identified. All scientists participate in (3) and (5), focusing on different processes/aspects.




Thanks again and Happy Thanksgiving!

A journey of thousand miles starts with a single step
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Goal: Use continuous long-term ARM measurements to
enhance/accelerate evaluation/improvement of parameterizations
of cloud-related fast processes in GCMs. FASTER will be also
valuable to NWP, WRF and CRM evaluation and development.

Eight Interconnected Major Tasks
e Construction of fast-physics testbed by integrating SCM-testbed,
NWP-testbed, and a WRF (see posters by Lin et al. and Wu et al.)
» Execution of a suite of WRF/CRM/LES simulations
 Integration of various data (see poster by Jensen et al)
» Construction of a multiscale data assimilation system
e Evaluation of model performance
« Examination and improvement of parameterizations
» Assessment and development of evaluation metrics
 Incorporation of acquired knowledge into the full GCMs




Progress Report

® Some timelines
-- 11/10/08, knew the proposal solicitation & charged to lead
-- 2/9/09, proposal submitted
-- 5/1/09, notified of the good news of proposal being funded
-- 6/09, DOE labs received $; able to use in July at BNL
-- 9/09, University received $

® New team members since proposal being funded
-- Wuyin Lin at BNL
-- Satoshi Endo at BNL
-- Tami Toto at BNL
-- Gljs de Boer at LBL

-- Catherine Rio at GISS-CU
-- Ewan O’Connor at UR-BNL

® Fast-physics testbed and web setup at BNL
® Examination of SGP radiation and cloud observations

® Model preparation and tune-up

® We are progressing from preparation stage to “warm-up” stage




W-band radar Ka-band radar

A possible solution
Reflectivity (r¢),

Attenuation (r3)

20(5-2008
Constrained inversion
algorithm Huang et al.,,
2009

N.ew Clou§l MICROBASE
microphysics retrieval

alibrate MICROBASE
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Research has progressed, but the
pace has been frustratingly slow!

Virtually Unchanged Large Uncertainty
of Model Climate Sensitivity through Ages

8.0 (Adapted from Schwartz 2009)
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Wide spread are likely related to parameterlzatlons of cloud-related
fast (subgrid) processes.



Eight Tasks and Major Fast Processes

=HONMENS

- Fast-physics testbed (NWP-

testbed & SCM-testbed)

o A suite of high-resolution
model simulations

» Model evaluation against
measurements

-- Model errors

e Evaluation metrics

-- Statistical measures
-- Forecast skill

e Data assimilation

e Full GCM assessment
 Data integration

Major Fast Processes

* Microphysics

-- Warm clouds

-- Ice clouds

-- Mixed phase clouds

-- Mono vs. multi-moment

. schemes

Evaluation approach @8 Aerosol-cloud interactions
‘ » Radiation

» Shallow convection

» Deep convection
Evaluation variables B =it lalaaEaivApde= glan =l

» Boundary processes
- * Subgrid turbulence

e Cloud fraction

 Land-surface-atmosphere
Interaction




What is FASTER?

® FASTER = FAst-physics System TEstbed and Research
-- testbed and research, system, evolving, faster work

® Result from CCPP (ESM) proposal “Continuous Evaluation of Fast
Processes in Climate Models Using ARM Measurements”

® Collaborative effort: 21 investigators from 10 institutions
® Co-managed by ESM and ASR programs

FASTER is a multi-institutional ESM effort to bridge ESM and
ASR sciences by fully utilizing ARM measurements to evaluate
GCM parameterizations of cloud-related fast processes.

(Fast processes = GCM subgrid process)
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