Parameterization of Entrainment-
Mixing Processes - Paradigm Shift

e Fundamental for cloud- S T N
environment interactions '
i f\ BUBBLE
e Fundamental for cloud
physics WAKE

e Convection parameterization

e AIE overestimation in GCMs Scorer, R.S., and F.H. Ludlam: 1953:
Q.J. Roy. Meteor. Soc., 79, 317-341.

Significant Gaps in Science and Paradigm Shift in Parameterization



Why Do We Care and Why Paradigm Shift?
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Microphysical Measure
for Homogeneous Mixing Degree -- ¥
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This microphysical homogeneous mixing degree quantifies microphysical effects of
mixing mechanisms continuously from extreme homo to extreme inhomo.



New Parameterization for
Homogeneous Mixing Degree

e Eliminate the need for
assuming mixing
mechanisms
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e Scale number can be
calculated in models with
2-moment microphysics

e Cu: W, Vs. NLD

-
T
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Improve Scale Number, N, .

Combined with that for entrainment rate, we are exploring a
parameterization that unifies entrainment-mixing-microphysics



Why Do We Care and Why Paradigm Shift?

March 2000 Cloud 10OP at SGP
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(Lu et al 2011: J. Geophys. Res, 116, D2027 )



Validation with LES Results

A benchmark case over the SGP site simulated by WRF-FASTER
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Transition Scale Number: Dynamical
Measure of Homogeneous Mixing Degree

r_=10um, N=300cm™’, £=27cm’s™>, RH=60%, T=274K
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New Approach
for Estimating Entrainment Rate

* Eliminate need for in-cloud
measurements of temperature
and water vapor
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* Have smaller uncertainty
- - - - Traditional Approach, g, > 0.01 g kg'3

* Have potential for linking New Approach, g,> 0.001 g kg

entrainment dynamics to
microphysical effects
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o
»
l Ll

Height above Cloud Base (km)
o o
N o

* Have potential for remote _
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Lu et al 2012: Geophys. Res. Lett. 39, L04862



New Parameterization for
Homogeneous Mixing Degree

107

 Eliminate the need for
assuming extreme
Inhomogenous or
homogenous mixing;

 \Work best for models
with 2-moment schemes: ;

e Testing with SCM and
CRM/LES in FASTER

Homogeneous Mixing De:gret-:-,\p1 (%)
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A new parameterization that unifies entrainment rate and mixing effects on cloud
microphysics is on the horizon.



New Parameterization for
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Dynamics: Damkoehler Number

m  Damkoehler number: Entrained | Unmixed
Drier Air | Cloudy Air

Da — Tmix / z-react “@ O
O O

m 7. the time needed for complete turbulent homogenization of an entrained
parcel of size L (Baker et al., 1984):

= T, the time needed for droplets to evaporate in the entrained dry air or the
entrained dry air to saturate (Lehmann et al 2009):

df _ A. S
dt I, :
ds r,: mean radius

gt~ B°S  s:supersaturation



PDF and Distance Dependence
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Homogeneous Mixing Fraction

n: Kolmogorov scale; L* transition
scale; N, transition scale number
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Further parameterization of the scale number leads to a much needed
parameterization for homogeneous mixing fraction.

Lu et al 2011: Examination of turbulent entrainment-mixing mechanisms using a combined
approach. J. Geophys. Res.; 2012: Relationship between homogeneous mixing fraction and
transition scale number, Environ. Res. Lett. (to be submitted)



Task of convection parametrisation

in practice this means.

Determine occurrence/localisation of convection

> Trigger

Determine vertical distribution of heating, moistening and
momentum changes

>  Cloud model

Determine the overall amount of the energy conversion,
convective precipitation=nheat release

> Closure

14



The “Kuo” scheme

Closure: Convective activity is linked to large-scale moisture
convergence

P—(1— b)j(aqu dz

Vertical distribution of heating and moistening: adjust grid-mean to
moist adiabat

Main problem: here convection is assumed to consume water and
not energy -> .... Positive feedback loop of moisture convergence

15



Adjustment schemes

e.g. Betts and Miller, 1986, QIRMS:

When atmosphere is unstable to parcel lifted from PBL and
there Is a deep moist layer - adjust state back to reference profile
over some time-scale, i.e.,

(a_Tj B Tref -1 (ajj B Orer =
ot conv. 4 ot conv. g

T e IS constructed from moist adiabat from cloud base but no
universal reference profiles for q exist. However, scheme is robust
and produces “smooth” fields.

16



Adjustment schemes:

The Next Step is an Enthalpy Adjustment

First Law of dH = deT + Lvdqv

Thermodynamics:

With Parameterized Convection, each grid-point column is treated in
Isolation. Total column latent heating must be directly proportional to
total column drying, or dH = 0.

JColT ~Tip =] L, (@ — 3, )dP

17




The mass-flux approach

_ . 0w
QlC = L(C - &)

/o

Condensation term Eddy transport term

Aim: Look for a simple expression of the eddy transport term

o'®' =7

18



Mass-flux entraining plume cloud
models

# Entraining plume model
g
¥ oy Continuity:
# & %_'_Di_Ei_g%:O
I o op
Cumulus element i Heat:
N\ a(gisi)+D.Si—EiS g@(Misi):
ot op

£ Specific humidity:
£ a(c;qi)wiqi Eg_gdMa) _

19




Mass-flux entraining plume cloud
models

Simplifying assumptions:

OX
1 SteaCWI(S)tsetltﬁ]gélsjf?ﬁjs%ggh({/ection parametrizations

today still make that assumption, some however
are g_rﬂ%nostic

2. Bulk mas X appswaniover all cumulus elements, e.qg.
id—M:g—é':)—gaMC:E_D With MC:IZM" g:izgiv 5:Zé‘l
&,0 fmd2] denote fractivnal E—M/ps D=MI/ps

entrainment/detrainment, E,D [s "]
entrainment/detrainment rates
3. Spectral method

M, (p) = [ my (2)n(p.2)de

e.g., Arakawa and Scﬁ)ubert (1974) and derivatives
Important: No matter which simplification - we always describe a

cloud ensemble, not individual clouds (even in bulk ﬁﬂ)dels)



Large-scale cumulus effects deduced
using mass-flux models

oS e
Qc E_gMCa_p+ D(S"-5)-Le

Physical interpretation (can be dangerous after a lot of maths):
Convection affects the large scales by

Heating through compensating subsidence between cumulus elemer
The detrainment of cloud air into the environment (term 2)

Evaporation of cloud and precipitation (term 3)

Note: The condensation heating does not appear directly in Q,. Itis
however a crucial part of the cloud model, where this heat Is
transformed in kinetic energy of the updrafts.

Similar derivations are possible for Q,. 21



Summary (1)

m Convection parametrisations need to provide a
physically realistic forcing/response on the
resolved model scales and need to be practical

m a number of approaches to convection
narametrisation exist

m pasic ingredients to present convection
parametrisations are a method to trigger
convection, a cloud model and a closure
assumption

m the mass-flux approach has been successfully
applied to both interpretation of datz and

A . B B AA B . B AAI‘AIAAA‘ IAA B . B




Summary (2)

The mass-flux approach can also be used for the parametrization of
shallow convection.

It can also be directly applied to the transport of chemical species

m The parametrized effects of convection on humidity and clouds
strongly depend on the assumptions about mlcrothsms and mixing
in The cloud model --> uncertain and active research area

m ... Future we already have alternative approaches based on
explicit representation (Multi-model approach) or might have
approaches based on Wavelets or Neural Networks

23



Development of Parameterization
e Turbulent entrainment-mixing processes

* Three-moment-based microphysics

» Convection

e Implementation of CLUBB (multi-variate PDF
approach)

e Consideration of cloud structure

e Coupling between convection and microphysics



Dependence of Homogeneous Mixing
Fraction on Transition Scale Number
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Three Definitions of Homogeneous
Mixing Fraction --- ¥,

~InN=InN; Inr’-=Inr;
- - 3 3
INN, —InN. Inr; —Inr;

V3

This definition, ¥ ,, turns out to be related to a:

vy, =1l-a
where a was defined by Morrison and Grabowski (2008):

N = No(i)a

Jo



Two Transition Scale Numbers (2)

T act 1S DAsed on:

dr A S | r:droplet radius;

1 dt AF s: supersaturation:;
A: a function of pressure and temperature;
< .
ds B: a function of pressure, temperature and
—=—Brs droplet number concentration (N, or N,).

Scale NumberNLa



Explicit Mixing Parcel Model (EMPM)

Domain size:
ML S 20 mx 0.001 m x 0.001 m :
_T q roplet _evapc:_>r_at|0n
. ,° e Adiabatic Number Concentration:
| ”‘°,',ei”'” Fiffusiolil 102.7, 205.4, 308.1, 410.8, 513.5¢
o
turbulent deformation Relative humldlty
—— E/ 11%0, 22%, 44%, 66%0, 88%;
entrainment
.. *.°. Dissipation rate:

saturated parcel

le-5, 5e-4, 1e-3, 5e-3, 1e-2, 5e-2 m
Krueger (2008) Mixing fraction of dry air:
0.2,0.3,04,0.5,0.6,0.7,0.8, 0.9.



Entrainment-mixing processes

comEIica‘l'e the disEer‘sion effect as well.
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Note the opposite relationships of mean-volume radius to relative dispersion
In the two figures. The left panel is largely consistent with the adiabatic
condensation theory whereas the right one with entrainment-mixing processes.



Atmospheric Modeling Background

1950s - : Beginning (Charney and von Neumann)

“To von Neumann, meteorology stood the most to gain
from high speed computation”

1960-1990s: Expansion Phase

1990- Consolidation and Application
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