Quantifying aerosol mixing state with entropy measures

Matt West and Nicole Riemer

Mechanical Science and Engineering University of Illinois at Urbana-Champaign

March 21st, 2013

Single-particle diversity

p_i^a = mass fraction of species a in particle i
mixing entropy of ith particle: H_i = −∑_a p_i^a ln p_i^a
diversity of ith particle: D_i = e^{H_i} (units of effective species)

 Concepts independently discovered in information theory, statistical mechanics, ecology, genetics, finance, etc.

Population-level diversities

- lacksim average particle diversity: $D_lpha=e^{H_lpha}$, $H_lpha=\sum_i p_i H_i$
- bulk population diversity: $D_{\gamma} = e^{H_{\gamma}}$, $H_{\gamma} = -\sum_{a} p^{a} \ln p^{a}$ where:
- p_i = mass fraction of particle i in the population ■ p^a = mass fraction of species a in the population then:

• inter-particle diversity:
$$D_{\beta} = \frac{D_{\gamma}}{D_{\alpha}}$$

• mixing state index:
$$\chi = \frac{D_{\alpha}-1}{D_{\gamma}-1}$$

Mixing state diagram

Archetypal cases

Archetypal cases

Matt West and Nicole Riemer

Urban plume PartMC simulation

Matt West and Nicole Riemer

Mixing state entropy measures

Urban plume PartMC simulation

