SOA: Anthropogenic-Biogenic Interactions Laboratory Studies

Focus Questions

- 1. Fate of organic peroxy radicals in the gas phase
- 2.Particle-phase reactions
- 3. Physical state of organic aerosol particles

- as affected by anthropogenic activities, and the impact on SOA production and climate-relevant SOA properties

Gas and particle-phase chemistry and phase interact to determine particle size and composition, in turn affecting hygroscopic, CCN, & optical properties Fate of organic peroxy radicals $RO_2 \rightarrow R(OO \rightarrow OOH \text{ (isomerization + } O_2))$ $RO_2 \rightarrow HO_2 \rightarrow ROOH$ $RO_2 \rightarrow RO_2 \rightarrow [R(O) + ROH] + 2RO \rightarrow RO_2 \rightarrow [R(O) + ROH] + 2RO \rightarrow RONO_2 + [RO \rightarrow HO_2]$ $RO_2 \rightarrow RONO_2 + [RO \rightarrow HO_2]$

increasing HO₂, RO₂•, NO_x

- Affected by HO_2 , RO_2 , $& NO_x$ concentrations

Particle-phase reactions

 $A + B \longrightarrow C$

- Affected by organic composition, water, acidity, & phase

Physical state of organic aerosol particles
Liquid, semisolid, solid (increasing viscosity)
Affected by organic composition: oligomers & water

Major potential anthropogenic affects on biogenic SOA: NO_x, VOC products & oligomer formation, acidity (H_2SO_4 , HNO_3, NH_3, amines)

Laboratory Study Needs

- More detailed lab studies to go along with SOA yield measurements - improve understanding of chamber environment and ability to extrapolate results to the atmosphere and improve models
- Quantitative data other than SOA yields & CHO
 - chemical tracers for testing models
 - > molecular product identification & yields and relation to SOA yield
 - > broad product classes: organic nitrates & sulfates
 - > functional groups
 - > oligomers
 - > standards
 - gas-particle partitioning (vapor pressures)
 - gas- and particle-phase kinetics

Laboratory Study Needs

- Effects of VOC concentrations, NO_x, walls, lights, acidity, water, particle size
- Relationships between particle size & composition and hygroscopic, CCN, & optical properties

Potential DOE/ASR Role

- Support single programs
- Support laboratory campaigns