The role of satellites in biomass burning characterization

Charles Ichoku and Ralph Kahn

Climate & Radiation Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD

Station Fire in California, near JPL in Aug/Sep 2009 courtesy of http://hometown-pasadena.com/ Presented at the DOE Atmospheric Systems Research (ASR) Science Team Meeting, Potomac, MD, 18-20 Mar 2013 Session: Roundtable on Biomass Burn Observation Project (BBOP)

Fire Affects Environ, AQ, Weather, and Climate

Smoke Warming over Bright Surfaces (Ice and Clouds)

Black Carbon Deposition on Snow and Ice

Fire Disturbance to Ecosystem, Life & Property

Smoke PM and Gases Affect Air Quality

Smoke Cooling over Dark Surfaces (Vegetation and Ocean)

> Smoke Affects Cloud Microphysics and Heating Rate

Alaska Border Fires (summer 2004) with massive smoke emission Terra-MODIS image of July 01, 2004, 21:40 UTC courtesy of MODIS Rapid Response team

MODIS Fire Detection for 2003

Annually Persistent Global Issue 3.1×10⁹ t of biomass carbon burned 1.1×10⁹ t is emitted to the atmosphere

(Fearnside, 2000, Climatic Change 46: 115–158.)

Fires contribute: 40% BC, 25% CO₂ of total annual global emissions

Global Fire Emissions and Impacts

Species	Fire Sources	% of All Sources	Impacts
Carbonaceous Aerosols		34% - 38%	EPA Criteria Pollutant
Black Carbon (BC)		40%	BC Global Mean Radiative forcing 55% of that of CO2
Carbon Dioxide (CO2)	~13,400 Tg/yr	25%	
Carbon Monoxide (CO)	~690 Tg/yr		EPA Criteria Pollutant
NMHC	~49 Tg/yr		
Methane (CH4)	~39 Tg/yr		Over 25 times atmos heating rate of CO2
N2	~26 Tg/yr		
NOx	~21 Tg/yr		EPA Criteria Pollutant

Based on ARCTAS (Summer 2008) it was shown that CO2, CO, and CH4 alone comprised 98.6% of the measured carbon released from fires (Simpson et al., 2011).

Active fire radiative power (FRP) observations from satellite

MODIS Aqua/Terra Day/Night Fires during Jul 2008

Essential Attributes of FRP

- ≻Contains sub-pixel information.
- ≻Qualitative measure of fire intensity/size.
- ➤Can be used in near real-time for smoke emissions and other applications
- ≻Not sensor dependent: can be used for climate data records.

Traditional Emissions Estimation Approach

Emissions = Emission Factor (EF g/kg) × Biomass (BM kg)

$BM = A \times B \times \alpha \times \beta$

Where: A=Area burned, B=Biomass density, α=Above ground biomass proportion, β=Combustion Efficiency

Alternative Approach

Use Satellite Fire Radiative Power/Energy (FRP/FRE)

(1)Emissions = EF × BM (from FRE)

[Wooster]

[lchoku]

(2)Emissions = Emission Coeff. (C_e) × (FRP or FRE)

Smoke Emission rate Correlates with Fire Radiative Energy release rate

Ecosystem-based C_e vs EF

Controlled burns conducted inside the Burn Chamber of the Fire Sciences Lab., USFS, Missoula, MT, Nov. 2003

Smoke from Mexico -- 02 May 2002

<u>Aerosol:</u> Amount Size Shape

Medium Spherical Smoke Particles

Dust blowing off the Sahara Desert -- 6 February 2004

Large Non-Spherical Dust Particles

MISR **Aerosol Type** Distribution MISR Version 22, July 2007

MISR Stereo Heights Station Fire, Los Angeles CA August 30 2009, Orbit 50641

Smoke at more than 7 km ASL (yellow and green in right image), and related clouds at over 10 km (red)

Smoke Plume Characterization from MISR

Oregon Fire Sept 04 2003 Orbit 19753 Blks 53-55 MISR Aerosols V17, Heights V13 (no winds)

Kahn et al., JGR 2007

Wildfire Smoke Injection Heights & Source Strengths

[These are the two key parameters representing aerosol sources in climate models]

MODIS Smoke Plume Image & Aerosol Amount Snapshots

GoCART Model-Simulated Aerosol Amount Snapshots for Different Assumed Source Strengths

Different Techniques for Assuming Model Source Strength Overestimate or Underestimate Observation Systematically in Different Regions

Petrenko et al., JGR 2012

Evaluation of a 1D plume-rise model: Towards a parameterization of smoke *injection heights*

1-D Plume-rise model heights vs. MISR-observed max. plume heights
-- Models have *lower dynamic range than observed*, but very variable

Evaluation of a 1D plume-rise model: Towards a parameterization of smoke *injection heights*

Val Martin et al., JGR 2012

Kahn, Survy. Geophys. 2012

BACKUP SLIDES

Fire Intensity Contributes to Plume Height Variability

Need to Characterize Fires and their relationship to Heat Energy and Smoke Characteristics and Trajectory

Effects of Scan Angle on MODIS fire observation over JPL Station Fires

Terra-MODIS: LocalTime=11:45 am, Scan Ang=1°, Npix=116, Total FRP=28879 MW

Aqua-MODIS: LocalTime=1:25 pm, Scan Ang=51°, Npix=5, Total FRP=4814* MW

Analysis and Visualization by Luke Ellison

*This value is after removing duplicates

1000

AMS Scene of Poomacha Fire, CA on October 26, 2007

