TWP-ICE CRM/SCM/LAM/GCM intercomparison studies: A few lessons learned

Ann Fridlind, NASA/GISS thanks to Jon Petch and Adrian Hill, UK Met Office Ping Zhu, Florida International Univ. Yanluan Lin, UCAR/NOAA Laura Davies and Christian Jakob, Monash Univ. and all the participants!

TWP-ICE CRM and cross-model-class inter-comparison studies: A few lessons learned

- CRMs with periodic BCs are prone to MSE drift (predicted SH and LH fluxes + radiative flux divergence differ variably from VARANAL large-scale forcing) [Fridlind et al., 2012]
 - —LESSON #1: may be better to simply avoid long (> 7-d) CRM simulations if comparison with tropical observations is a goal (relaxation not popular)

TWP-ICE CRM/SCM/LAM/GCM intercomparison studies: A few lessons learned

- CRMs with periodic BCs are prone to MSE drift (predicted SH and LH fluxes + radiative flux divergence differ variably from VARANAL large-scale forcing) [Fridlind et al., 2012]
 - —LESSON #1: better to keep CRM simulations short (<several days) if comparison with tropical observations is a goal (SCM-style relaxation unpopular)</p>
- Rigorous CRM-SCM comparison does require identical initialization and BCs [Petch et al., submitted]

—LESSON #2: if SCM and CRM studies differ in LS forcing and CRM-SCM comparison is a goal, incorporate an identically forced sensitivity test

Model type	LEM/CRM	LAM	Global	SCM
reference	Fridlind et al	Zhu et al (2012)	Lin et al (2012)	Davis et al
	(2012)			(2013)
Number of models	10	6	9	9
Horizontal domain	200-300 km ²	400-500 km ²	Global	One column
size				
Analysis area	domain	average of grid	average of grid	1 grid box
		boxes overlapping	boxes overlapping	
		with the TWP-ICE	with the TWP-ICE	
		variational analysis	variational analysis	
		domain	domain	
Horizontal grid length	0.9 - 3	1 - 3	20 - 250	25 - 200
(km)				
Vertical grid length	0.18-0.6	0.3-0.5	0.3-1.0	0.3-1.0
around 500 mb (km)				
Forecast lead time	Free running for	12 to 36 hours	24 to 48 hours	Free running for
analysed	whole period			whole period
Forcing	Variational	Nested in global	ECMWF	ECMWF
-	analysis	models driven by	analysis	Variational
	-	EC analysis	-	analysis

TWP-ICE CRM/SCM/LAM/GCM intercomparison studies: A few lessons learned

- CRMs with periodic BCs are prone to MSE drift (predicted SH and LH fluxes + radiative flux divergence differ variably from VARANAL large-scale forcing) [Fridlind et al., 2012]
 - —LESSON #1: better to keep CRM simulations short (<several days) if comparison with tropical observations is a goal (SCM-style relaxation unpopular)</p>
- Rigorous CRM-SCM comparison does require identical initialization and BCs [Petch et al., submitted]
 - —LESSON #2: if SCM and CRM studies differ in LS forcing and CRM-SCM comparison is a goal, incorporate an identically forced sensitivity test
- LAM simulations tend to locate intense rain events variably in space and time [Zhu et al., 2012]

-LESSON #3: statistical comparison could have benefits beyond matched spatiotemporal comparison

TWP-ICE CRM/SCM/LAM/GCM intercomparison studies: A few lessons learned

 CRMs with periodic BCs are prone to MSE drift (predicted SH and LH fluxes + radiative flux divergence differ variably from VARANAL large-scale forcing) [Fridlind et al., 2012]

—LESSON #1: better to keep CRM simulations short (<several days) if comparison with tropical observations is a goal (SCM-style relaxation unpopular)</p>

• Rigorous CRM-SCM comparison does require identical initialization and BCs [Petch et al., submitted]

—LESSON #2: if SCM and CRM studies differ in LS forcing and CRM-SCM comparison is a goal, incorporate an identically forced sensitivity test

• LAM simulations tend to locate intense rain events variably in space and time [Zhu et al., 2012]

-LESSON #3: statistical comparison could have benefits beyond matched spatiotemporal comparison

- GCM/LAM/CRM/SCM comparison would benefit from choosing at least one common theme and a unique set of diagnostics, e.g., stratiform and convective rainfall [Lin et al., 2012]
 - —LESSON #4: unique diagnostics require run-time calculations that can't be done after-the-fact, so a clear focus on joint scientific questions *in advance* would be beneficial

