“Ice Nucleation” breakout session

Wednesday, March 20, 10:30 p.m.=12:00 p.m.

1. Xiaohong Liu: Motivation to the session

. Gourihar Kulkarni: Laboratory investigation of ice nucleating properties of bare
and coated dust particles

. Paul DeMott: Investigations of marine ice nuclei

. Raymond Shaw: Is contact nucleation more efficient because of the existence of
a three-phase contact line?

. Zhien Wang: Explore Ice Generation Dependency on Aerosol Properties with
Remote Sensing

. David Mitchell: Evidence of homogeneous nucleation during SPARTICUS using in
situ measurements

. Jennifer Comstock: Factors influencing cirrus lifecycle using SPartICus data
. Jiwen Fan: Dust effects on clouds and precipitation by serving as ice nuclei (IN)

. Chuanfeng Zhao: Sensitivity of CAMS5 Simulated Clouds to Ice Nucleation
Parameterizations and the Climate Impacts in the Arctic and Southern Ocean
Regions

10. Open Discussion/focus group (45 mins)



Proposed “Ice Nucleation” Focus Group

Motivation

e |ce nucleation processes involving aerosols are key to the
formation and properties of ice and mixed-phase clouds, and
thereby can impact both the atmospheric radiative energy
distribution and precipitation processes.

e Compared to droplet formation in warm clouds, ice nucleation
is more complicated and much less understood.

e |arge uncertainties in the representation of ice nucleation
processes in climate models, and aerosol effects on ice and
mixed-phase clouds.



Objectives

* |dentify and collect key data needed to improve
understanding of IN sources and heterogeneous
ice nucleation mechanisms and their relationship
to overall aerosol properties and environmental
conditions;

e Develop the general framework for ice
nucleation parameterization; and inter-compare
different approaches and different formulations
(derived from laboratory versus field data) of
parameterizations for different aerosol types;

 Reduce uncertainties in aerosol impacts on cold
clouds, precipitation and climate forcing.




Approaches

Laboratory experiments provide details of the fundamental
processes of ice formation under controlled conditions. A focused
laboratory workshop on ice nucleation measurement is encouraged.

Field measurements will allow us to understand the ice nucleation
mechanisms occurring in the real atmosphere and, in some cases, to
validate cloud impacts. Both in situ and laboratory measurements will
provide data for parameterization development and model
evaluation.

Remote sensing (ground-based and satellite) will scale up in situ
measurements while in situ measurements will provide information
for improving remote sensing retrieval algorithms and developing new
capability. Both remote sensing and in situ measurements will provide
data for model validation.

New parameterizations will be implemented into cloud models and
GCMs to improve the representation of ice microphysics and to
examine the roles of ice nucleation on cloud and precipitation, and
climate forcing.



Items identified at the CAPI working group meeting
last November

Near-term Action and Work in Progress

e Quantify marine sources of IN (P. DeMott, S. Burrows, K. Prather)

 Explore relationship between Ni and temperature, relative
humidity and updraft velocity from existing measurements (e.g.,
SPARTICUS) (X. Liu, J. Comstock)

e Use remote sensing measurements to quantify dust impact (Z.
Wang, X. Liu)

e Estimate ice number concentration with remote measurements
(Z. Wang)

* Explore dependence of ISDAC Ni simulations on dust speciation
(X. Liu)



Items identified at the CAPI working group meeting
last November

New measurements needed (ideas):

e Conclusive temperature-dependence of immersion nucleation on
BC (G. Kulkarni)

e CVIthat distinguishes between droplets and ice crystals (G.
Kulkarni)

e IN GOAMAZON 2015 (G. Kulkarni, P. DeMott)

* |IN measurements that more clearly identify mode of ice
nucleation

e Updraft velocity in cirrus clouds (J. Comstock)



Items identified at the CAPI working group meeting
last November

New field experiments (ideas):

e Laboratory intercomparison of IN measurements (G. Kulkarni)

e IN closure in laboratory with CFDC>pCVI>SPLAT (G. Kulkarni, A.
Zelenyuk)

e IN, Ni closure at surface multiple months (G. Kulkarni, A. Zelenyuk)

* IN measurement in Southern Hemisphere Cloud-Aerosol
Experiment



G. Kulkarni at PNNL:

Laboratory investigation of ice nucleating properties
of bare and coated dust particles
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General consensus is that surface modification by sulfuric acid leads to reduction

in the IN ability. However, some studies show the deactivation depends upon the

dust mineralogy, coating thickness and surface morphology and suggest no

reduction.

105 110



Hypothetical scenarios of interactions between dust and sulfuric acid vapor,
and possibility of such interactions deduced from their deposition IN

activity understanding.

vapor

Such detailed measurements
are urgently needed to
accurately represent the ice
nucleation processes in the
cloud models.
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Paul DeMott at CSU:

Investigations of marine ice nuclei



January 2013 UCSD lab experiments: Evidence that
biology impacts the emission of IN from sea spray
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Seaspray IN (lab = red ; ICE-T (diamond) and cruise Oo§%1%do
(circle) field = blue) vs. historical (arrows) marine IN e
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Raymond Shaw at Michigan Tech:
Is contact nucleation more efficient because of the
existence of a three-phase contact line?



Is contact nucleation more efficient because of the existence of a
three-phase contact line?

High Speed
Camera

Optical
Port

Isothermal
Box

Homogeneous Supercooled -
Substrate Droplet

Immersion Contact
Mode Maode

No preference for contact line observed.

New result: even when
we vary the contact
angle on the substrate or
the rate of cooling, still
no preference for
contact line.

Gurganus et al. 2011 (J Phys Chem Lett); Gurganus et al. 2013 (J Phys Chem C)



NeW Cloud chamber facility...

Cloud chamber with
capability to reach
upper tropospheric
conditions, with
controlled turbulence
conditions (e.g.,
thermal convection).

Contact: R. Shaw
(rashaw@mtu.edu)



Zhien Wang at University of Wyoming:

Explore Ice Generation Dependency on Aerosol
Properties with Remote Sensing



Dust Impacts in the Context of
Different Parameterizations

e Large variations in ice
concentrations.
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differences of dust impacts.
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Impacts.



Activation fraction for size > 0.5 um
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David Mitchell at DRI:

Evidence of homogeneous nucleation during SPARTICUS
using in situ measurements



Evidence of Homogeneous Nucleation During SPARTICUS
Using In Situ Measurements

David L. Mitchelll, Jennifer Comstock?, Subhashree Mishra®

1. Desert Research Institute, Reno, Nevada
2. PNNL, Richland, Washington
3. CIMMS, Univ. Oklahoma, Norman Oklahoma



http://asr.science.energy.gov/
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Evidence of homogeneous freezing nucleation?
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Ignoring aggregation & advection, the ratio N/IWC appears related to
tf
the nucleation rate coefficient J (# g1 s1): N/IWC =] J(t) dt
tO
where t, = ice initiation and t, = sampling time of ascending parcel.



Temperature dependence of ice particle size
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Temperature dependence of ice particle shape
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Synoptic Cirrus PDFs for Updraft Velocity and RHI
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Updraft PDF confirms proper discrimination in selection of synoptic cirrus cases.
RHi PDF shows remarkable separation between heterogeneous nucleation region
(warm cloud) and region where homogeneous nucleation may occur. While

homogeneous nucleation requires RHi > 140%, RHi may be < 140% when sampling
ice crystals produced through homogeneous nucleation.



Jennifer Comstock:

Factors influencing cirrus lifecycle using SPartICus data



Frequency (%)

Factors influencing cirrus lifecycle using
SPartlCus data (J. Comstock)

 Thermodynamic properties
(temperature, humidity)

 Nucleation Mechanisms
» Vertical velocity variability

» |ce crystal number concentration

=~ Temperature (C) - = DLH RH-Ice — 2DS Number Concentration
[ ] ' 201 | - \ ‘ | - ‘
25 i ] |
[ 201 ] [
20| 7 E;\E,\“ 15°
L §15_ — ~— [
& = |
L & 1O F
®r : | g 10
2 10| ,g_ |
10 [ 19 I
I L e 5-
I 5L
5 7 I
: 0 | | |
e N pia - S e S e 1o M0t 1O
Temperature (C) RH-ce (%) Number Concentration (1/L)

April 8, 2013 29




100<Nice<1000 1/

'Nice>1000 1/L
Nice<100 1/L
S
[3

L g

-40 -20
Temperature (C)

-60

(%) ©9|HY

Thermodynamic Relationships

0

-80

30

April 8, 2013



Synoptic Cirrus - Updraft Velocity and RHI
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 RH-ice: larger separation for warm and cold clouds suggests
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Frequency (%)

Anvil Cirrus PDFs for Updraft Velocity and RHi
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Jiwen Fan at PNNL:

Dust impacts on cloud and precipitation by serving as IN



1. Dust Impacts on California Winter Clouds and Precipitation in CalWater 2011
» Background

Enhanced precipitation is observed in the cases with dust compared with those
without dust. The hypothesis from the observational study is that dust enhances ice
formation and precipitation (Ault et al. 2011).

» Goal

 To validate the hypothesis by simulating the cloud cases with dust during
CalWater field campaign (Feb-Mar, 2011), and examine how the mountain
precipitation is susceptible to increases in aerosols and long-range transport
dust.

2. Impact of Sahara Dust Layer on Convective Cloud Development and
Precipitation over the Tropical Eastern Atlantic Ocean (EAO)

» Hypothesis: For storms at EAO, dusts are transported to the upper layers
through convective updrafts and then serve as effective IN, leading to
stronger stratiform rain (Min et al. 2009).

» Goal: to evaluate the hypothesis by simulating MCS with dust layer, and
understand impacts of the Sahara dusts on cloud properties and
precipitation regimes over the region of the tropical (EAQO)

35



6"’1 T TreT—
- \
.
Se
4p ~
£ . £
= =X,
§3’ M e o o e mm e o Ve (- —
® 34 Clean Case 3{ DustCase
Z'. Convective Ice # Convective Ice #
0 6 12 18 24 30 0 6 12 18 24 30
! 15-
[0} PR N Y S B | S I N TS B ¢ 1 S I I P B | 1 | L 1 12 -
0 20 40 60 80 1000.0 05 1.0 15 20 0 5 10 15 20 0.00.10.20.30.4 0.5
Ne (em™) LWC (g m™) Ni (L") IWC (g m™) g- -
16 [ T T T T T T ] E
ﬂé\ [ Base e 3 \ICI/ 6__ -— e o w
£ 14 Base CCN - 7 3 Clean Case 5] Dust Case
i Base ND ] - s - .
.%— 120 o ] Stratiform Ice # Stratiform Ice #
S - E 0 6 12 18 24 30 0 6 12 18 24 30
- 10 ]
Q i ] Hour Hour
< - 1 O . e— O O —
g 8 ] 0.1 110 20 40 60 80100 00 110 20 40 60 80100
= N i
(&S]
6 — — O DOLAGES. O DOLAGES.
2 L - ]
4 e 1T 1 1 1 1 M . M 1 ]
10 12 14 16 18 20 22
Time (UTC)

36



Chuanfeng Zhao at LLNL:

Sensitivity of CAMS5 Simulated Clouds to Ice Nucleation
Parameterizations and the Climate Impacts in the
Arctic and Southern Ocean Regions



Sensitivity of CAMS Simulated Clouds to Ice
Nucleation Parameterizations and the Climate
Impacts in the Arctic and Southern Ocean
Regions (Xie, S., X. Liu, C. Zhao*, Y. Zhang, 2013, J. Climate)

1. Meyers et al. (1992): Nn =exp{a+b*[100*(5;-1)]}
2. DeMott et al. (2010): Nn=a*(273.16-T)P(N,q5) (27316 D+d)

IN concentrations in mixed-phase clouds (-37°C<T<0°C)

(a) CAMS50 (b) CAM5DM
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Large Cloud Fraction Changes Seen in Mid-

and Low- level Clouds for the two regions
Differences in CF (CAM5DM - CAMS50)
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Large Impact Seen in Cloud Condensates

Liquid Water Path at Barrow
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Stronger Cloud Radiative Forcing at TOA

SWCRF (CM5DM-CAM50)

Arctic: Both are comparable to Satellite Obs.
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Measurable and Significant Progress on a 5-Year Time Scale

Identify the uncertainty and nucleation mode with ice nuclei
measurements (participate in International IN chamber
Intercomparison Workshop, Kulkarni, DeMott)

Conclusively explore the temperature-dependence of immersion
nucleation on black carbon from different combustion sources
(Kulkarni)

Quantify marine sources of ice nuclei and their relationship with marine
biogeochemistry (DeMott, Burrows)

Understand the dominant nucleation mode (homogeneous versus
heterogeneous nucleation) in cirrus clouds and its dependence on
aerosol properties and updraft velocity (Liu, Comstock, Mitchell)
Quantify the impact of ice nuclei (e.g., dust, biological aerosol) on
clouds and precipitation using in situ and remote sensing
measurements (Z. Wang, DeMott, Southern Ocean Proposal SOCRATES)
Significantly improve the representations of ice nucleation and its
optical and microphysical effects on clouds and precipitation in regional
and global models (Liu, Fan, Xie)
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