

What datasets and results we can provide from MC3E

Xiquan Dong University of North Dakota

Jingjin Tian, Jingyu Wang, Ning Zhou, Ron Stenz, Baike Xi, Tony Grainger, Uni. of North Dakota Zhe Feng, DOE PNNL Pat Minnis and Mandy Khaiyer, NASA Langley Scott Giangrande and Tami Toto, DOE BNL

MC3E results we can provide

- 1. 2D and time-height NEXRAD over SGP and its classified DCS components (Convective core, Stratiform region, and Anvil clouds).
- 2. Surface precipitation from NEXRAD Q2 and OK mesonet measurements
- 3. Time series of NEXRAD and corrected KAZR reflectivity, fall speed, LWP, rain rate, and surface rain drop diameter (disdrometer)
- 4. UND citation aircraft in situ measurements
 5. GOES retrieved cloud properties

These datasets will be used to study the DCS cloud properties, life cycle, precipitation, and to provide a ground truth for modelers to validate their simulations.

There are 15 flights during MC3E

Date	Sortie	Takeoff	Landing	Hours	Notes
4/22	MC3E-1	223337	005710	2.4	Severe convection, anvil; legs
4/25	MC3E-2	092119	122229	3.0	MCS and stratiform; steps
4/27	MC3E-3	080207	112245	3.4	Stratiform; spiral
5/1	MC3E-4	162839	184213	2.2	Cold season stratiform; spiral
5/10	MC3E-5	214937	001048	2.4	Stratiform; spiral & porpoise
5/11	MC3E-6	160209	192706	3.4	Stratiform; steps
5/18	MC3E-7	072010	092156	2.0	Deep convection, precipitating anvil;
<u>5/20</u>	<u>MC3E-8</u>	<u>130539</u>	<u>170204</u>	<u>4.0</u>	Severe convection, stratiform; steps, spiral over ARM SGP
5/23	MC3E-9	212942	004129	3.2	Severe convection; anvil
5/24	MC3E-10	201825	222750	2.1	Precipitating anvil; spiral
5/27	MC3E-11	210309	000405	3.1	Shallow cumulus;
5/30	MC3E-12	122204	160034	3.6	
6/1	MC3E-13	163000	174429	1.3	Shallow cumulus;
6/1	MC3E-14	190636	220246	2.9	Precipitating anvil; spiral
6/2	MC3E-15	144124	181847	3.6	Cirrus; steps, spiral

Now we focus on three cases

Date	Sortie	Takeoff	Landing	Hours	Notes
4/25	MC3E-2	092119	122229	3.0	MCS and stratiform; steps
					Lower radar reflectivity associated with clean airmass, AOD~ 0.2
					→Higher LWP~ 4000-5000 gm ⁻² ,
					→Huge rain rates= 10-20 mm/hr,
					Larger max rain drop Diameter~ 4-5 mm at surface
					➔ Higher IWC~ 1 gm ⁻³ , and re~ 400 um
<u>5/20</u>	<u>MC3E-8</u>	<u>130539</u>	<u>170204</u>	<u>4.0</u>	Severe convection, stratiform; steps, spiral
					over ARM SGP
					A classic DCS case
5/23	MC3E-9	212942	004129	3.2	Severe convection; anvil
					Higher radar reflectivity associated with
					polluted airmass, AOD~ 0.4
					→Lower LWP~ 1000-2000 gm ⁻² ,
					→Rain rates < 10 mm/hr,
					Max rain drop Diameter< 5 mm at surface
					➡Higher IWC~ 0.9 gm ⁻³ , and re~ 800 um

A Case Study: May 20

 From Surface, aircraft and satellite observations and retrievals

2011.05.20 00:00 UTC

Daily Precip from NEXRD Q2 and OK Mesonet

Time series of Surface Radar and other obs

NEXRAD Cross-section Z_e & Classification (2011.05.20)

DCS microphysical retrievals using fall speed

→Fall Speed derived from KAZR reflectivity Above 4 km, Fall speed~ 1 m/s Below melting layer, FS ~ 10 m/s

Based on V~ r Above 4 km, water droplet radii are 110 to 150 um (≈ r_{ice}=240-340 um)

Below melting layer, rain drop radii range from 1 to 2 mm,consistent to Disdrometer measurements (D ~ 2-4 mm)

Comparing NEXRAD and its classification with GOES results

2011.05.20 15:45 UTC/Flight Time 15:45 UTC

GOES retrieved cloud properties at 15:45Z

GOES retrieved cloud properties at 15:45Z

Challenge and difficulty for modeling DCS clouds

Quite often, models can simulate large-scale frontal systems, but not for local systems

Thanks for your attention

4/19/2013

1. NEXRAD 3D structure and classification

1. NEXRAD 3D structure and classification

2. Surface precipitation from NEXRAD Q2 and OK mesonet measurements

Daily Precip up to 150 mm on April 25 over East OK and MO/AR

3. Time series of Surface Radar and other obs

3. Time series of Surface Radar and other obs

4. UND citation aircraft in situ measurements

4. UND citation aircraft in situ measurements

5. GOES retrieved cloud properties May 23

ER2 Ka Radar Image

HIWRAP Ka Reflectivity(dBZ) 20110520

Highger cloud-top heights (~ 14 km) from ER2 Radar are consistent to GOES retrievals, indicating KAZR ARSCL signals were attenuated out at that level.

GOES retrieved cloud properties at 23:15Z

NASA LARC

CLOUD

TOP/BOTTIME

G13 ZTHK

25 APR 11 11:15 Z

ES cloud properties at 11:15Z, April 25 G

APR 25⁻

15

4/19/2013

GOES retrieved cloud properties at 23:15Z

GOES retrieved cloud properties at 23:15Z CIT FLIGHT TRACK MAY 23, 2011 DEFF (m) TIME (GMT) CIT FLIGHT TRACK MAY 23, 2011 TAU(--)

Cloud droplet terminal fall speed

Diam. (mm)	Fall speed (m/s)	Diam. (mm)	Fall speed (m/s)
0.1	0.27	2.6	7.57
0.2	0.72	2.0	7.57
0.3	1 17	2.8	7.82
0.4	1.17	3.0	8.06
0.4	1.62	3.2	8.26
0.5	2.06	3.4	8.44
0.6	2.47	3.6	8.60
0.7	2.87	3.8	8 72
0.8	3.27	4.0	0.72
0.9	3 67	4.2	0.03
(10)	74.03	4.2	8.92
1.0	4.05	4.4	8.98
1.2	4.64	4.6	9.03
1.4	5.17	4.8	9.07
1.6	5.65	5.0	9.09
1.8	6.09	52	0.12
2.0	6.49	5.4	9.12
2.2 -	6.90	5.4	9.14
2.4	7.27	5.6	9.16
2.4	1.21	5.8	9.17

 TABLE 8.1. Terminal Fall Speed as a Function of Drop Size (equivalent spherical diameter) (From Gunn and Kinzer, 1949)

1) 0< r<40 um, $V_f = K_1 r^2$, Stokes' law, $K_1 = 1.19*10^6 \text{ cm}^{-1} \text{ S}^{-1}$ 2) 40<r<0.6 mm, $V_f = K_2 r$, linear law, K2=8*10³ S⁻¹ 3) 0.6<r<2 mm, $V_f = K_3 r^{1/2}$, Square root law, $K_3 = 2.2*10^3 (\rho/\rho 0)^{1/2} \text{ cm}^{-1} \text{ S}^{-1}$. ρ is air density, $\rho 0$ is a reference density of 1.2 kg/m3. (Rogers and Yau book, P124-126)