PECAN

Plains Elevated Convection At Night

			0 100 200 300 400 500		
Corresponding Pls	SPO: David B. Parsons, U. Oklahoma (dparsons@ou.edu)EDO: Bart Geerts, U. Wyoming (geerts@uwyo.edu)				
Co-Investigators	Tammy M. Weckwerth, NCAR Conrad Ziegler, NSSL (NOAA rep) Richard Ferrare, Langley (NASA rep)				
	David Turner (DOE ARM rep)	Field phase	1 June –15 July 2015		
Additional Steering Committee members		Funding agencies	NSF AGS; NOAA; NASA; DOE		
		Participating universities	17		
	Josh Wurman, CSWR	Education &	30+ students in the		
One-page statements of interest	28 total from 21 organizations; 4 are international 59 PIs & co-PIs up to 17 proposals to NSF	outreach	field		

MC3E Breakout Session ASR Science Team Meeting 18-21 March 2013

- do ecces al.

PECAN science

amplitude-ordere solitary waves

Кеу Торіс	Key Hypothesis
Initiation and early evolution of elevated convection (e.g., Wilson and Roberts 2006)	Nocturnal convection is more likely to be initiated and sustained when it occurs in a region of mesoscale convergence above the SBL
Internal structure, microphysics, and dynamics of nocturnal MCSs (e.g., French and Parker 2010)	The microphysical and dynamical processes in developing and mature stratiform regions of nocturnal MCSs are critical to their maintenance and upscale growth through determining the structure and intensity of cold pools, bores and solitary waves that interact with the SBL
Vertical displacements by undular bores and wave-like features (e.g., Koch and Clark 1999)	Bores and associated wave/solitary disturbances generated by convection play a significant role in elevated, nocturnal MCSs through lifting parcels above the SBL to levels at or near their level of free convection
Storm-scale numerical weather prediction (e.g., Surcel et al. 2010)	A mesoscale network of surface, boundary-layer and upper-level measurements will enable advanced data assimilation systems to significantly improve the prediction of convection initiation. Advances in QPF associated with nocturnal convection will require either greatly improved convective parameterizations, or, more likely, horizontal and vertical resolutions sufficient to capture both SBL disturbances and convection

PECAN platforms

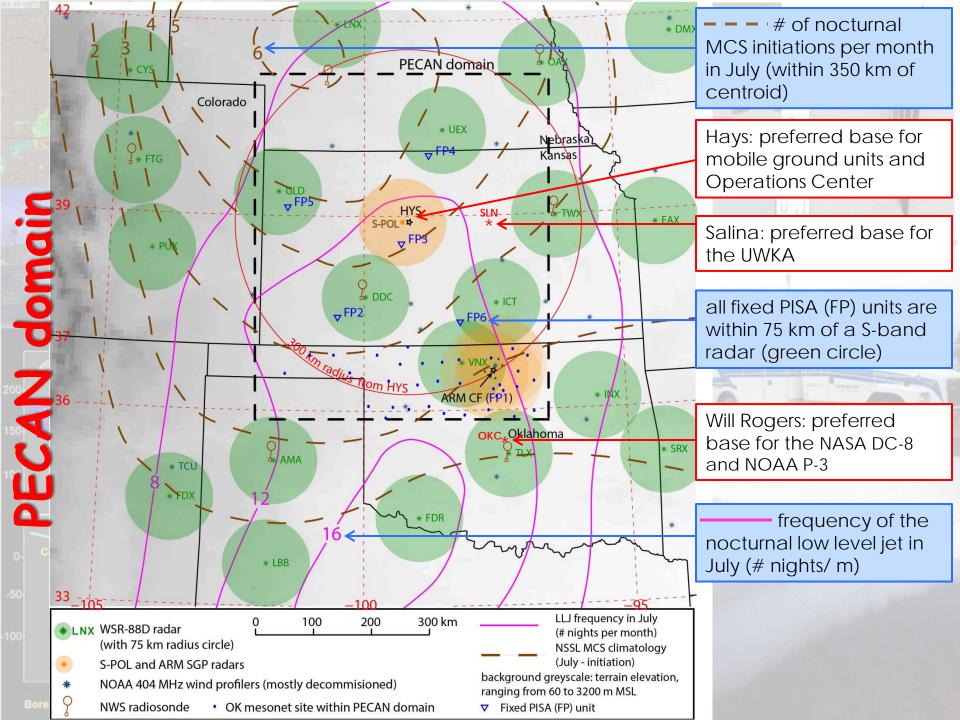
scanning radars:

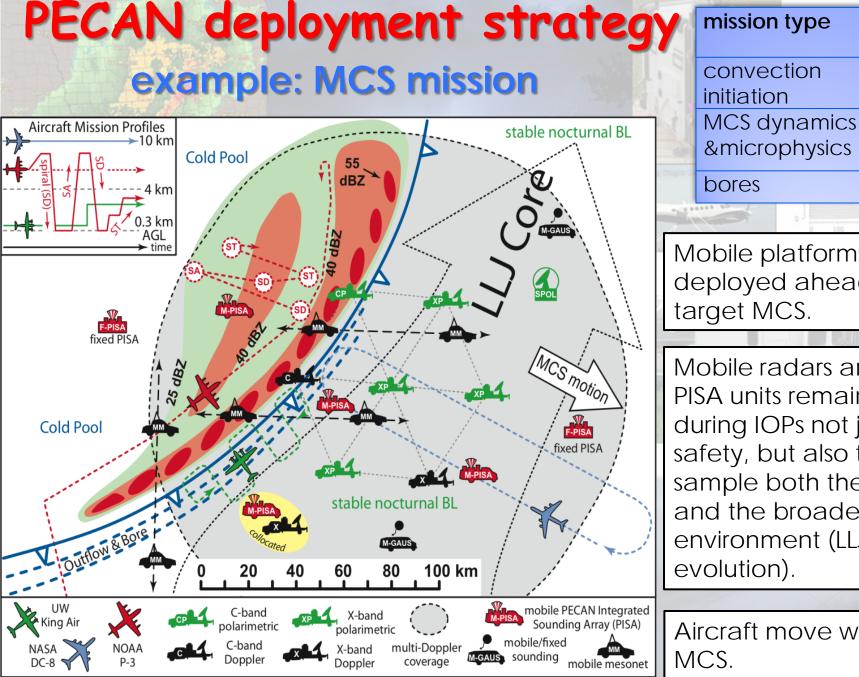
- <u>fixed</u>: S-PolKa, plus WSR-88D and ARM SGP radars
- mobile: 6 X-band + 2 Cband radars

aircraft:

- <u>clear-air</u>:
 - UW King Air with lidars
 - NASA DC-8 with LASE, interferometer

> storm-penetrating:


- NOAA P-3 with X-band fore/aft scanning tail radar
- A-10 may be requested separately to participate in PECAN


surface met & sounding vehicles

PECAN Integrated Sounding Array (PISA)

- <u>concept</u>: a PISA unit profiles the kinematic, thermodynamic, and moisture structure of the lower troposphere.
- > <u>components</u>: each unit has
 - surface meteorology
 - a radiosonde
 - wind profiler (radar/sodar/lidar)
 - moisture and/or temperature profiler (DIAL, Raman lidar, microwave radiometer, AERI ...)
- array:
 - 10 complete units enabled by 15 participating institutions
 - 6 fixed PISA units
 - 4 mobile PISA units
- <u>Key challenge</u>: deployment of mobile facilities at night ahead of the target.
- <u>Solutions</u>:
 - Inter-IOP radar & PISA mobility only (not intra-IOP relocations);
 - Advance selection & characterization of potential sites;
 - NSSL forecast & nowcast guidance.

De ao omi	ID	lead Pl	instrument source	instruments
	fixed pro	ofiling units (FP): sta David Turner	Ationary during the duration ARM CART Central Facility	of PECAN, operating continuously wind lidar, Raman lidar, AERI, MR, sfc met and sfc fluxes, radiosonde unit, four 915 MHz WPs with a typical spacing of 10 km
ks	FP2	Rich Clark + Belay Demoz	Millersville University	1000 m tethersonde profiles of met variables/turbulence, sfc met and sfc fluxes, backscatter lidar, radiosonde unit, and sodar
N			Howard Univ. and NASA/GSFC	ALVICE Raman lidar & GLOW and/or Leosphere wind lidars, MR
block	FP3	David Parsons + Volker Wulfmeyer	NCAR EOL University of Hohenheim, Germany	ISS-449, mini DIAL scanning DIAL (water vapor) and scanning rotational Raman lidar (temperature)
5			Colorado State University University of Manitoba	radiosonde unit MR and wind lidar
building	FP4	Tammy Weckwerth	NCAR EOL Radiometrics Naval Postgrad School	ISS with 915 MHz WP, mini DIAL, GAUS, sfc met MR flux tower, sodar, tethersonde
liu	FP5	Tammy Weckwerth	NCAR EOL Radiometrics	ISS with 915 MHz WP, sodar, mini DIAL, GAUS, sfc met MR
	FP6	John Hanesiak	University of Manitoba DOE	MR, wind lidar, AERI radiosonde unit & sfc met (ARM SPG Larned site)
SA	mobile p MP1	Drofiling units (MP): David Turner	operate during IOPs only University of Oklahoma, NSSL	CLAMPS: AERI, MR, and scanning Doppler lidar
ald Fro	MP2	Kevin Knupp	University of Oklahoma University of Alabama Huntsville	radiosonde & sfc met scanning Doppler lidar, 915 MHz WP, MR, sodar,
d		κονιτικτάρρ	MIPS truck	ceilometer, sfc met, radiosonde unit
-100-	MP3	David Parsons, H. Bluestein, Wayne Feltz	Naval Postgraduate School	TWOLF Doppler lidar & FM-CW radar (both truck- mounted) + sfc met
			University of Wisconsin	AERI + multi-spectral aerosol lidar + radiosonde unit
Bore merges	MP4	T. Weckwerth	NCAR EOL	Mobile ISS with 915 MHz WP, MGAUS, sfc met

Mobile platforms are deployed ahead of target MCS.

target # IOPs

5

10

5

Mobile radars and PISA units remain fixed during IOPs not just for safety, but also to sample both the storm and the broader environment (LLJ, BL

Aircraft move with the