Comparison of Mixed Layer Heights from Airborne High Spectral Resolution Lidar, Ground-based Measurements, and the WRF-Chem Model during CalNex and CARES

Amy Jo Scarino1,2, Mike Obland2, Jerome Fast3, Sharon Burton2, Richard Ferrare2, Chris Hostetler2, Larry Berg3, Barry Lefer4, Christine Haman5, John Hair2, Ray Rogers2, Anthony Cook2, David Harper2

1Science Systems and Applications, Inc., Hampton, VA USA
2NASA Langley Research Center, Hampton, VA USA
3Pacific Northwest National Laboratory, Richland, WA USA
4University of Houston, Houston, TX USA
5Trinity Consultants, Baton Rouge, LA USA

Manuscript will be submitted to ACPD soon
HSRL data used to find height of Mixed Layer

- PBL can be divided into discrete layers. For example, the daytime mixed layer (ML), also known as the convective boundary layer (CBL), is a subset of the PBL in which convectively driven eddies mix thermodynamic conditions, resulting in roughly uniform vertical profiles of moisture and potential temperature within that layer (Stull, 1988)
- ML heights derived from daytime-only cloud-screened aerosol backscatter profiles measured by the airborne HSRL; ML heights are a good proxy for PBL heights during the daytime
- Automated technique uses a Haar wavelet covariance transform with multiple wavelet dilations to identify sharp gradients in aerosol backscatter at the top of the ML (adapted from Brooks, JAOT, 2003)
- HSRL ML heights combine results from automated algorithm and manual inspection of HSRL backscatter profiles
HSRL ML and WRF-Chem PBL Comparisons

- Diurnal variation for HSRL ML heights and WRF-Chem PBL heights
- Lines connecting the white dots denote median height for each hour
- Largest difference is ~200 m during the early morning hours and could be attributed to a residual layer
Comparisons over the Central Valley performed best, whereas the complex terrain and water affected comparison results over Sierra Nevada and SF Bay.
ML Heights: HSRL compared to WRF-Chem

• Simulated aerosol backscatter from the WRF-Chem along the HSRL flight tracks was processed through the wavelet covariance transform algorithm to produce ML heights using the same methodology as used for the HSRL-1 ML heights.
Summary

• PBL height is a key parameter for simulating climate processes and assessing model simulation of aerosol pollutant concentrations and transport
• HSRL ML heights were important for assessing the WRF-Chem model and gave insight into the differences in PBL heights produced by different techniques (aerosol gradients vs. potential temperature)
• The small difference between the techniques supports the use of the ML computed from aerosol backscatter gradients as a good proxy for the PBL
• Suggests that other factors in the modeling and/or HSRL ML height retrievals were responsible for differences between the HSRL and WRF-Chem PBL heights

Additional Studies

• Currently analyzing the marine boundary layer for TCAP (2012), as well as data from other field campaigns that HSRL-1 and 2 have participated in
• Comparisons of HSRL ML heights to PBL heights from GEOS-5 and ECMWF-MACC