

Large-Scale Forcing for AMIE-GAN

Shaocheng Xie, Yunyan Zhang, and Renata McCoy Lawrence Livermore National Laboratory

Acknowledgments

Chuck Long (PNNL), Chidong Zhang (U. Miami), Steve Williams (NCAR), Bob Rilling (NCAR), Courtney Schumacher (TAMU), Scott Collis (ANL), and all field campaign participants

Analysis Method – The Constrained Variational Analysis Constrained Variational Analysis (Zhang and Lin, 1997) – Mass, Moisture, Energy, and Momentum are conserved $< \nabla \cdot V >= -\frac{1}{gp_s} \frac{dp_s}{dt}$ TOA: (GOES, GMS, MeteoSat) soundings. $\frac{\partial < q >}{\operatorname{red}} + < \nabla \cdot \overset{\square \square}{Vq} >= E_{s} - \operatorname{Prec} - \frac{\partial < q_{l} >}{\mathcal{A}}$ profilers, radar. חחר ППГ aircraft Operational Analysis $\frac{\partial < s >}{\Box \Box \partial} + < \nabla \cdot \stackrel{\square \Box}{Vs} >= R_{TOA} - R_{SRF} + LPrec + SH + \frac{\partial < q_l >}{\partial} L$ $= \frac{\partial < V >}{\tau_s} + < \nabla \cdot VV > -fk \times < V > -\nabla < \phi > = \tau_s$ (Courtesy of Dr. M. Zhang of SBU) Surface: (Buoy, Tower, Surface Rain gauges, Met stations)

Derived forcing from VA is dynamically and thermodynamically consistent with surface and TOA observations

Office of

Analysis Details

Forcing Data Product Details

- > 11/13/2011 12/13/2011 (2nd MJO)
- Analysis done over the area covered by S-POL
- > 3 hours, 25mb

Data Used

- > ECMWF analysis as first guess
- > Precipitation from observations
 - S-POL precip
 - TRMM precip
- Other required surface and TOA fluxes from the ECMWF model

ECMWF analysis is pretty good

But not for precipitation ...

- ECMWF precip is too strong
- Notice suspicious double spikes of SPOL precip for major rain events, due to the average over only half of the domain? A full 360 degree integration data is needed

Thanks to Bob Rilling (NCAR) Courtney Schumacher (TAMU)

Precip largely influences the forcing fields – ECMWF Omega

time

• Upward motion is too strong in ECMWF due to the very large precipitation on Nov. 23rd

Omega: constrained with SPOL rainfall

• The magnitude is significantly reduced, but suspicious double peaks are seen in the derived Omega field

Omega: constrained with SPOL rainfall

Office of Science

Large-scale forcing

- Pre: lower layer moisture convergence with weak upward motion
- CONV: upward motion in the entire column with maximum near 600 hpa associated strong advective cooling and moistening in the middle troposphere
- After: downward motion in the lower troposphere and warming and drying there.

Q1 & Q2 at different stages

- Pre: low-level condensational heating and drying, high level cooling and moistening
- CONV: column condensation heating and drying
- After: low-level evaporative cooling and moistening, high level heating and drying

Apparent Heating Source Q1

Summary

- A large scale forcing data set for AMIE-GAN is developed based ECMWF analysis
- The analysis data needs to be adjusted to balance the observed precipitation, given the large uncertainty in the model produced precipitation field
- The derived forcing and Q1/Q2 fields allow to study the characteristics of the large-scale structure and diabatic heating/moistening associated with the tropical convective systems observed during the field campaign

Future work

Address uncertainty in the observed precipitation

- Double peaks in SPOL
- Incorporated more observations into the analysis:
 - Surface Radiation from C. Long
 - Address uncertainties in observed precipitations and etc
 - Possible correction with surface rain-gauge obs
 - Liquid water path from MWR
 - Incorporate sounding data as background field
 - TOA flux based satellite data?
 - ECOR surface fluxes?
- Compare with radar-derived LH profiles (from Courtney Schumacher)

Thank You

Gan Events

First 2 Gan events stronger, last weaker Significant mid level moistening

Forcing and Diabatic Heating/Moistening Structures

Science

 Large-scale forcing and diabatic heating/moistening structures at different stages of convection (such as before, during and after the Nov 23rd heavy rain event)

Precipitation AMIE GAN

