Retrieving Buoyancy Profiles and Entrainment Rate from Vertical Velocity and Reflectivity

Steve Krueger and Ian Glenn, Univ. of Utah

- Used the Giga-LES to analyze 3D updraft cores.
- Giga-LES:
 - 200 km x 200 km domain
 - Horizontal grid size = 100 m
 - Statistics of vertical velocity cores agree very well with those from LeMone and Zipser (1980).

A visualization of a Giga-LES cloud system using SHDOM, a 3D radiative transfer method.

Parcel Model for Vertical Velocity

From LES of deep convection: $w(z) \approx c * B(z)$.

a, b, and c are empirical constants.

Using w(z) and D(z) from radar, we can retrieve B(z) and λ , the fractional rate of entrainment.

Identify 3D cloudy updraft cores

Identify 3D cloudy updraft cores

- We use a cloudy updraft core definition similar to "updraft core" in Lemone and Zipser (1980):
 - –Vertical velocity (w) > 1 m/s and cloud water/ice mixing ratio > 0.1 g/kg

Identify 3D cloudy updraft cores

- We use a cloudy updraft core definition similar to "updraft core" in Lemone and Zipser (1980):
 - –Vertical velocity (w) > 1 m/s and cloud water/ice mixing ratio > 0.1 g/kg
- Local core definitions, such as transect or singlelevel methods, provide little context in terms of updraft extent or life-cycle stage.

Distribution of 3D Cloudy Updraft Core Volumes

Largest volumes imply length dimension of O(10 km)

Distribution of Aspect Ratios

Partition cloudy updraft cores into two groups

clouds are connected to lowest levels

The two groups reflect the life-cycle stages of convective cells

Higher Cloud Base

Low Cloud Bases

3D Cloudy Updraft Core Profiles

 The active clouds have vertical velocity profile shapes that are reminiscent of parcel model results.

- The active clouds have vertical velocity profile shapes that are reminiscent of parcel model results.
- How well can a parcel model reproduce W(z), given the total (loaded) buoyancy?

- The active clouds have vertical velocity profile shapes that are reminiscent of parcel model results.
- How well can a parcel model reproduce W(z), given the total (loaded) buoyancy?
- Can the simple estimate W = C * B_{unloaded}
 (suggested by Alison Stirling, UKMO) do as well?

Total Buoyancy, Unloaded Buoyancy

Total Buoyancy, Unloaded Buoyancy, Vertical Velocity

Parcel Model for Vertical Velocity

 $1 dW^2$ Use for each $= aB - b\lambda W^2$ $\frac{1}{2} \frac{dz}{dz}$ 3D cloudy updraft core Total buoyancy ...gives the Iterate to find from cloudy best W profile the fractional updraft core (min. RMS entrainment error) rate that...

Entrainment rates from parcel model best-fit to cloudy updraft W

Updraft Core Vertical Velocity, Parcel Model Vertical Velocity

Error in parcel model W

Error for W = C * B_{unloaded} (C=120 s)

For W = C * B_{unloaded}, what is C?

• 3D cloudy updraft cores consist of two distinct groups that are associated with active and dissipating life-cycle stages.

- 3D cloudy updraft cores consist of two distinct groups that are associated with active and dissipating life-cycle stages.
- A parcel model can predict updraft core vertical velocity profile with MAE ~ 1 m/s given actual total buoyancy profile and best-fit fractional entrainment rate.

- 3D cloudy updraft cores consist of two distinct groups that are associated with active and dissipating life-cycle stages.
- A parcel model can predict updraft core vertical velocity profile with MAE ~ 1 m/s given actual total buoyancy profile and best-fit fractional entrainment rate.
- The MAE for Alison Stirling's estimate W = C * B_{unloaded} is only slightly larger, and W requires only the "unloaded" buoyancy.

- 3D cloudy updraft cores consist of two distinct groups that are associated with active and dissipating life-cycle stages.
- A parcel model can predict updraft core vertical velocity profile with MAE ~ 1 m/s given actual total buoyancy profile and best-fit fractional entrainment rate.
- The MAE for Alison Stirling's estimate W = C * B_{unloaded} is only slightly larger, and W requires only the "unloaded" buoyancy.
- Analyzing 3D cloudy updraft cores provides context, such as cloud base, cloud vertical extent, and cloud shape, that is not available from 1D and 2D core analyses.