Aerosol Optical Depth (AOD) and Spectral

 Albedo (9 July to 6 September)Kathy Lantz ${ }^{1}$, Gary Hodges ${ }^{1}$, and Joe Michalsky ${ }^{2}$
${ }^{1}$ CIRES, University of Colorado and ${ }^{2}$ NOAA/ESRL

Cape Cod Albedo 21 to 80 degrees Solar Zenith Angle

Cape Cod Albedo 23 to 80 degrees Solar Zenith Angle

Single Scattering Albedo Retrieval from MFRSR

- Compare modeled and measured diffuse and direct transmission
- Direct transmission depends on Rayleigh scattering, ozone absorption, and aerosol extinction
- Diffuse also depends on surface albedo, asymmetry parameter, and single scattering albedo

11 May 2003 @ 09:20; $\operatorname{AOD}(550 \mathrm{~nm})=0.078 ; \mathrm{SZA}=44.9$ degs; $\mathrm{SSA}=0.971$

Same as Figure 2 except SSA $=0.901,0.871,0.841$

Summary

- The additional 1623 nm band will allow better characterization of coarse mode in ambient conditions that will get better asymmetry parameter
- With this and surface albedo will get ambient SSA@5 wavelengths
- And this will work in very low AOD conditions (down to at least 0.10)

