Questioning the importance of the cloud lifetime effect: The relative roles of drizzle and the sun Sandra Yuter Matthew Miller, Casey Burleyson, Margaret Frey, Andrew Hall, Matthew Wilbanks, Simon deSzoeke⁺ and David Mechem* North Carolina State University *University of Kansas +Oregon State University 10 March 2014

DOE ASR Science Team Meeting

In this figure, a single cloud represents the average response of a field of clouds [Stevens and Feingold (2009) following Albrecht (1989)]

Diurnal cycle of Cloud Fraction (3° x 3° boxes)

Potential Roles of Precipitation in Marine Stratocumulus Cloud Cover Changes

- Strong precipitation has been implicated in regional cloud cover change
 - Depletion of cloud liquid water

Also occurs during day

- Reduced moisture transport between ocean surface and cloud
 - Drizzle evaporates below cloud creating stable layer
 - Stable layer decouples the sub-cloud layer from surface and inhibits moisture transport from surface into the cloud layer
- Oscillating behavior of open cellular clouds related to creation and convergence of cold pools (Feingold/Terai)

Neglect of Common Cause?

Stevens et al. 2005 example from DYCOMS II

730am local time (after sunrise)

125W

120W

POCs

cloud thinning

35N

30N

Precipitation and Cloud Transition EPIC 2001 ship data sunrise

Comstock et al. 2007

NOAA/ESRL vertically-pointing Cloud Radar data 13 -14 Nov 2008, longitude ~76° W

VOCALS REx (Southeast Pacific, Oct-Nov 2008)

- C-band radar data -
 - PrecipitationInformation
 - Every 3 minutes
 - 60 km radius around ship
 - 250 m resolution

NOAA ship Ronald H. Brown

- GOES IR Satellite
 - Cloud Fraction Info
 - Every 30 min

GOES VIS with ship radar reflectivity overlaid

C-band radar- observed drizzle

Areal rain rate and the number of drizzle cells peak between 0-3 am and are at their lowest values between 2-5 pm.

Burleyson et al. (2013)

Diurnal cloud amount changes and lack of sensitivity to areal precipitation

>5% CF decrease overnight (6pm to 6am) in only 4 out of 289 1-hr samples (1%) and 9 out of 306 3-hr samples (3%)

Cloud condition categories

Scattered: < 75% CF

Overcast: CF=100%

Broken: 75%<CF<100%

Drizzle cell peak intensities

Drizzle cell peak intensities

Cumulative Frequency of Precip Area vs Cloud Event (day/night)

Becomes Overcast, Remains Broken Remains Overcast, Becomes Broken

Cumulative Frequency of Precip Area vs Cloud Event (day/night)

Becomes Overcast, Remains Broken Remains Overcast, Becomes Broken

Drizzle does not appear to be a primary driver for decreasing cloud fraction

Conclusions

- Anecdotal examples can be found for a variety of cloud fraction and precipitation area conditions
 - Cloud fraction increasing with/without precipitation
 - Cloud fraction decreasing with/without precipitation
 - Cloud fraction persisting with/without precipitation
- At night:
 - Overcast conditions with/without precipitation usually do not break up
 - Overcast cloud breakup can occur without precipitation
- During the day:
 - Clouds with larger precipitation areas tend to maintain their existing cloud fraction (likely thicker clouds)
 - Clouds that change cloud fraction have less precipitation area (likely thinner clouds)

Conclusions

- At 100-300 km and < 5 hour scales:
 - Drizzle and cloud fraction co-varying with diurnal cycle of solar radiation
 - Drizzle is neither necessary nor sufficient for reducing cloud fraction overnight
 - Impact of overnight drizzle reducing cloud fraction is very small (< 3% occurrence)

Wyant et al. 2014 Model Intercomparison

Fig. 4. Model-mean cloud-top height along 20° S compared with mean cloud-top measured using cloud radar from C-130 flights (Bretherton et al 2010).

Models have difficulty with the amplitude and phase of the diurnal cycle of low clouds

Wyant et al. 2010

Results – Diurnal Cycle of Cloud Fraction

Observed to vary with diurnal cycle in marine Sc

- Long Wave and Short Wave radiation fluxes
- Cloud fraction
- Subcloud turbulent moisture transport
 - Profiles of vertical velocity variance, potential temperature, water vapor mixing ratio, horizontal wind, dew point temp
 - Wind direction
- Cloud top height, cloud base height, cloud depth, Liquid Water Path
- Number of drizzle cells, drizzle area, areal average rain rate

Not observed to vary with diurnal cycle in southeast Pacific marine Sc

- Near surface aerosol concentration
- Near surface wind speed
- Conditional rain rate
- Proximity of drizzle cells