Satellite measurements of CCN using clouds as CCN chambers

Daniel Rosenfeld, The Hebrew University of Jerusalem

CCN chambers measure the number of activated CCN (N_a) for a given super-saturation (S).

Measuring N_a and S in clouds can provide CCN(S):

It will be shown here that both N_a and S can be retrieved from high resolution (375 m) NPP/VIIRS satellite data, and validated against the SGP measurements.

Having both **CCN(S)** and **W**_b provides us with the possibility to separate aerosol from meteorology effects on cloud radiative effects.

N_a is retrieved from the T-r_e (cloud top temperature – drop effective radius), due to nearly inhomogeneous cloud mixing, resulting in nearly adiabatic r_e.

2. S is calculated from the knowledge of N_a and W_b (Cloud base updraft). S = C(T,P) $W_b^{3/4}N_a^{-1/2}$

W_b is retrieved from SGP radar;

- N_a calculation is based on calculated adiabatic water
 (LWC_a) vs. Satellite retrieved assumed-adiabatic r_e.
- LWC_a is based on radiosonde and ceilometer retrieved cloud base temperature (T_b).

CCN(S) is validated against SGP measured AOS and TDMA.

Satellite-only CCN(S) requires retrieving T_b and W_b

Validation of VIIRS retrieved cloud base temperature (°C) against SGP cielometer and sounding based measurements.

Zhu Y., D. Rosenfeld et al., GRL 2014

Satellite-only CCN(S) requires retrieving T_b and W_b

$$W_{b} = \sum \frac{N_{i}W_{i}^{2}}{N_{i}W_{i}} | W_{i} > 0$$

N_i stands for the frequency of occurrence of W_i.

DeltaT: Temperature difference between cloud base and cloud top.

T_s: surface skin temp. T_a: 2-m air temperature V: surface wind speed WS: vertical wind shear H_{cb}: cloud base height

NPP Satellite retrieved cloud base updraft, W_b

PhD of Youtong Zheng at the Hebrew University

Validation of Satellite-only CCN(S)

These are all the cases for which full validation data are available so far during times of convective clouds and NPP/VIIRS overpass at a viewing angle of nearly solar back scatter.

Conclusions and next steps

- We have proved the concept of retrieving CCN(S) by using clouds as CCN chambers.
- Other important results are the satellite retrievals of:
 - Convective cloud base drop concentrations, N_a.
 - Cloud base temperature, T_b, which allows the calculation of boundary layer vapor mixing ratio.
 - Cloud base updraft, W_b, based on satellite retrieved surface skin and air temperatures.
- Next, this has to be expanded to other areas.
- Eventually to be applied to the ultimate goal of disentangling the updraft from aerosol effects on cloud radiative effects.

