

# Dynamics retrievals in rain from Ka-W dual-wavelength Doppler spectra

Frederic Tridon, Alessandro Battaglia — Univ. Leicester Pavlos Kollias — McGill







### Outline

- Why multi-wavelength radar techniques? Why Doppler spectra?
- Retrieval of vertical velocity in rain from dual-wavelength Doppler spectra
- Retrieval of turbulence and rain drop size distribution

Work in progress

#### Multi-wavelength radar techniques

Wavelength dependence of scattering and

attenuation properties



| Band           | f [GHz] | λ [mm] |
|----------------|---------|--------|
| Х              | 10      | 30     |
| K <sub>a</sub> | 35      | 8.6    |
| W              | 94      | 3.2    |

#### Vertical velocity retrievals in rain with W-band radars

- Doppler spectra: reflectivity per Doppler velocity bin
- Fall velocity diameter relation for rain drops:  $V_t = f(D)$  (Atlas et al., 1973)
- Take advantage of the Mie resonance signatures in Doppler spectra of rain drops (Kollias et al., 2002, Giangrande et al., 2012)
  - Detection of the Mie notch at D = 1.65 mm, i.e.  $V_{fall} \approx 5.8$  m s<sup>-1</sup>
- Limits of application:
  - Minimum raindrop size threshold (~1.8 mm)
  - $\Box$  Very pronounced drop modes  $\rightarrow$  possible confusion with Mie resonance





#### Dual-wavelength: the Doppler Spectra Ratio (DSR)



- The DSR is almost independent of the Drop Size Distribution (DSD)
- With the DSR, the Mie effects are obvious for drop diameter smaller than the first Mie notch → extension of the retrievals to lower rainfall rates (need drops of only around 1.2 mm)





#### Doppler spectra widening due to turbulence

By random movement of the hydrometeors, turbulence is known to broaden the Doppler spectra (simulated using a to a convolution with a Gaussian shaped spectrum of width  $\sigma_{\tau}$ )



#### Doppler spectra widening due to turbulence

- The broadening effect depends on the spectrum shape and on the DSD
- The DSR shape depends slightly on the turbulence and DSD
  - Additional difficulty to retrieve the vertical wind
  - □ Possibility of retrieving the turbulence





#### Turbulence de-convolution

- Iterative de-convolution (Lucy, 1974) of the DSD with a set of possible turbulence intensities
  - □ Retrieval of the turbulence spectrum width  $\sigma_{\tau} \rightarrow$  eddy dissipation rate  $\varepsilon$
  - $\square$  Direct correspondence between Doppler spectra and DSD  $\rightarrow$  Estimate of the bin DSD
- Tricky process  $\rightarrow$  Simulations have shown that the de-convolution technique generally overestimates the retrieval of  $\sigma_T$



#### Optimal estimation of w, $\sigma_{\tau}$ and DSD

- Forward model of Ka and W-band radar Doppler spectra
  - □ Bin DSD, vertical velocity *w*, turbulence spectrum width  $\sigma_{\tau}$ , air density  $\rho$ , differential attenuation







#### Conclusion

- Exploratory research Work in progress
- New vertical velocity product in light rain
- Product combining vertical velocity, turbulence and bin DSD
- Time-height evolution of the DSD, influence of the dynamics on the collision-coalescence process
- How to guide this product? Are we ready for bin DSD comparison in models?

## **Thanks for your attention**

**Questions?**