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Motivation and Approach

* Cloud-resolving models (CRMs) simulate processes
whose representation in climate models is essential
for understanding climate and climate change.

« Current CRMs struggle to represent cloud-system
properties essential for understanding climate, for
example, cloud updraft vertical velocities, w.

« Appropriate CRM resolution and sub-grid
parameterizations are essential to removing current
limitations on CRMs as an essential tool in
understanding climate and climate change.
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Cloud updraft speeds are important controls on
cloud-aerosol interactions and an emerging
Important element in cumulus parameterizations
for climate models. Sherwood et al. (2013,
Nature) found convective mixing to be an
Important control on climate sensitivity. GCM
parameter studies show convective entrainment
to be an important control on climate sensitivity
(Stainforth et al., 2005, Nature; Sanderson et
al., 2010, Climate Dynamics; Zhao, 2014, J.
Climate).
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< Aerosol Invigoration of Deep Convection
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Donner Deep Convection Scheme

A Uniform distribution of £, evaporation from cumulus updratts

B Uniform distribution of I, evaporation in cumulus downdrafls

C Unitorm distribution of water sapor, provaded by cumulus updrafts. available to mesoscale clowds
D Water vapor in cumulus enviconment advected by mesoscale updrals

E Mesoscale updraft depth
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Until recently, observations of convective
vertical velocities have been extremely
limited, precluding evaluation of either

parameterized values for climate models

or CRMs. New radar observations of
vertical velocity (e.g., Collis et al., 2013, J.
Appl. Meteor. Climatol.) are providing

Important new constraints on both.

“Validated” CRMs can be used to guide
further parameterization development.



Height (km)

a. 50/920 MHz Profiler, Vertical Air Motion (m/s), + Upward, 19-20 January 2006
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fom Collis et al. (2013, J. Appl. Meteor. Climatol.)

Quantitative
assessment of
parameterized

vertical velocity PDFs
using radar
observations is an
urgent priority.
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Convective vertical velocities
from radar show general
structural agreement with AM3
deep convection
parameterization (multiple deep
updrafts with large vertical
velocities, mesoscale updraft
with lower vertical velocities,
mesoscale downdraft).
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Realism of vertical velocities in current
CRMs can be limited by resolution and
their treatments of sub-grid turbulence
and microphysics. Appropriate treatments
of sub-grid processes in CRMs offer
prospect of realistic simulation of vertical
velocities.



100-m horizontal resolution w PDFs from giga-LES agree
reasonably well with observations.
Altitude 4300m to 8100m
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Analysis by lan Glenn and Steve Krueger, University of Utah



TWP-ICE, 23 January 2006: Vertical Velocities from
DHARMA CRM with Double-M Mi hysi
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cloud water profile — member 2 condensate ice fraction — member 2
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Vertical Velocity PDFs for Deep Convective Cores
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Vertical Velocity in Convective Cores:
Sensitivities to Aerosol and Microphysics

TWP bin half deep core, Jan. 23
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TWP-ICE case study

TWP bin 10 deep core, Jan. 23
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A convective core is defined as a column where
w exceeds 1m/s for at least 4 km continuously.

By Xiaowen Li and Wei-Kuo Tao,
NASA GSFC

CRM integrations by Jiwen Fan also show vertical velocities can depend on bin vs. bulk treatment,
with stronger vertical velocities with bulk microphysics.
Pete Bogenschutz and Steve Krueger have found strong dependence on treatment of sub-grid

turbulence in CRMs.



Conclusions

GCM parameterization for vertical velocity PDF in deep convection has
been developed, critical for microphysics, radiation, CAPI in deep
convection.

Convective parameterization likely to remain important even in high-
resolution (10 km horizontal), cf., Arakawa and Wu (2013, J. Atmos. Sci.).

CRMs and LES provide climate-critical cloud properties and could serve as
references to guide climate-model development, if confidence sufficient in
CRMs and LES.

Basic climate-critical properties of state-of-science CRMs and LES depend
on their resolution and sub-grid parameterizations, especially
microphysics and turbulence.

New observations promise guidance in CRM and LES development.

Activity centered on reducing discrepancies between CRMs, LES, and
observations recommended, would also provide guidance for dealing with
similar issues in GCM representation of PDFs of vertical velocity.



TWP-ICE

0600 UTC ~ 2300 UTC January 22 (Event B)
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1310 UTC ~ 1750 UTC January 23 (Event C)
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Case Dependence: CRM vertical
velocities (solid) vs. Doppler retrieval
(crosses)

This model, with bin microphysics, under-
estimates Doppler velocities. DHARMA
model, with bulk microphysics, over-
estimated vertical velocities.

Analysis by Jiwen Fan (PNNL).
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