

Prove it! ARM's Progress Towards a Suite of Verified Precipitating Cloud System Retrievals

ARRA CLIMATE RESEARCH FACILITY

Scott Collis, Scott Giangrande, Jonathan Helmus, Kirk North, Christopher Williams, Virendra Ghate, Adam Theisen and Alain Protat

The Big Picture: Comparison Across Scales

- ARM's programmatic objective is to improve the understanding and representation, in climate and earth system models, of clouds and aerosols as well as their interactions and coupling with the Earth's surface.
- Direct measurements are great but only remote sensing measurements come close to the domain of a ESM/GCM grid scale.

Our approach:

- Work with Pis and existing retrieval code if possible.
- Improve if needed. Make robust, make ubiquitous as possible.
- Build using common data models so no special cases
- Prove it! Do our retrievals make sense? How do they compare to independent data sources. Unproven retrievals can lead to Garbage in Garbage out.
- Of course we recognize comparing two retrievals is not a ground truth.. But it is a start, especially when different methodologies are used and assumptions made.
- ARM is IDEAL for this approach, we have **Multi-scale** independent measurements!

Case 1: Precipitation Rates at the Southern Great Plains

- The data source: Scanning 5cm and 3cm wavelength radars.
- The desired product: Rain rates in mm/h at the surface, resolving fine scale structure but covering a domain equivalent to a GCM grid cell on Process scale time scale.
- Method: Use Polarimetric phase information which is calibration robust and insensitive to atmospheric attenuation combined with highly sensitive reflectivity factor data to retrieve specific attenuation (dBZ/km) and use this to retrieve rain rates.

Giangrande, Collis, Theisen and Tokay, Precipitation Estimation from the ARM Distributed Radar Network During the MC3E Campaign, JAMC, In Revision

- In this case our independent data source is a very dense network of rain gauges and distrometers.
- We used the GPM-ARM MC3E IOP as our test data set as we had an additional array of NASA gauges and distrometers.
- Data set combines multiple systems across regiemes (Supercell, MCS, weak convection, cold front/low)

Revision Prove it!

- In this case our independent data source is a very dense network of rain gauges and distrometers.
- We used the GPM-ARM MC3E IOP as our test data set as we had an additional array of NASA gauges and distrometers.
- Data set combines multiple systems across regiemes (Supercell, MCS, weak convection, cold front/low)

Giangrande, Collis, Theisen and Tokay, Precipitation Estimation from the ARM Distributed Radar Network During the MC3E Campaign, JAMC, In Revision

- In this case our independent data source is a very dense network of rain gauges and distrometers.
- We used the GPM-ARM MC3E IOP as our test data set as we had an additional array of NASA gauges and distrometers.
- Data set combines multiple systems across regiemes (Supercell, MCS, weak convection, cold front/low)

Giangrande, Collis, Theisen and Tokay, Precipitation Estimation from the ARM Distributed Radar Network During the MC3E Campaign, JAMC, In Revision

- In this case our independent data source is a very dense network of rain gauges and distrometers.
- We used the GPM-ARM MC3E IOP as our test data set as we had an additional array of NASA gauges and distrometers.
- Data set combines multiple systems across regiemes (Supercell, MCS, weak convection, cold front/low)

Giangrande, Collis, Theisen and Tokay, Precipitation Estimation from the ARM Distributed Radar Network During the MC3E Campaign, JAMC, In Revision

Now how can we use rain rates?

- Rain is what happens when we get a precipitating cloud system!
- The structure of the rain is dictated by the structure of the underlying system dynamics and microphysics, a MCS with defined convective, stratiform and transition elements produces a different rainfall "pattern" than isolated severe convection.
- So rainfall morphology can serve as a vital metric for if the structure in a LES or CRM model mirrors reality!

Now how can we use rain rates?

- Rain is what happens when we get a precipitating cloud system!
- The structure of the rain is dictated by the structure of the underlying system dynamics and microphysics, a MCS with defined convective, stratiform and transition elements produces a different rainfall "pattern" than isolated severe convection.
- So rainfall morphology can serve as a vital metric for if the structure in a LES or CRM model mirrors reality!

Case 2: Convective Vertical Velocities

- The data source: Networks of scanning Doppler radars
- The desired product: Three component three dimensional wind velocities in
- Method: Use the Doppler Velocities as a constraint in a cost based variational retrieval in tandem with the Anelastic Mass Continuity equation.
- Caveats: Lots of assumptions, W=0 at TOA and surface, do we adequately resolve convergence and divergence?

Case 2: Convective Vertical Velocities

- The data source: Networks of scanning Doppler radars
- The desired product: Three component three dimensional wind velocities in
- Method: Use the Doppler Velocities as a constraint in a cost based variational retrieval in tandem with the Anelastic Mass Continuity equation.
- Caveats: Lots of assumptions, W=0 at TOA and surface, do we adequately resolve convergence and divergence?

- In this case our independent data source are profiling radars which more directly measure the vertical velocity.
- In Darwin this is a Dual Frequency (VHF/UHF, 915/50MHz) system. Nonideal location.
- In the Southern Great Plains it is a network of UHF profiler systems ideally located at the multi-Doppler "sweet spots"
- Not a "direct measure" of vertical velocity by any means, but completely independent and more direct.

- In this case our independent data source are profiling radars which more directly measure the vertical velocity.
- In Darwin this is a Dual Frequency (VHF/UHF, 915/50MHz) system. Nonideal location.
- In the Southern Great Plains it is a network of UHF profiler systems ideally located at the multi-Doppler "sweet spots"
- Not a "direct measure" of vertical velocity by any means, but completel independent and more direct.

- In this case our independent data source are profiling radars which more directly measure the vertical velocity.
- In Darwin this is a Dual Frequency (VHF/UHF, 915/50MHz) system. Nonideal location.
- In the Southern Great Plains it is a network of UHF profiler systems ideally located at the multi-Doppler "sweet spots"
- Not a "direct measure" of vertical velocity by any means, but completely independent and more direct.

- In this case our independent data source are profiling radars which more directly measure the vertical velocity.
- In Darwin this is a Dual Frequency (VHF/UHF, 915/50MHz) system. Nonideal location.
- In the Southern Great Plains it is a network of UHF profiler systems ideally located at the multi-Doppler "sweet spots"
- Not a "direct measure" of vertical velocity by any means, but completely independent and more direct.

- In this case our independent data source are profiling radars which more directly measure the vertical velocity.
- In Darwin this is a Dual Frequency (VHF/UHF, 915/50MHz) system. Nonideal location.
- In the Southern Great Plains it is a network of UHF profiler systems ideally located at the multi-Doppler "sweet spots"
- Not a "direct measure" of vertical velocity by any means, but completely independent and more direct.

A taste of analysis

- For vertical velocities conditional sampling is essential.
 Take home
- In our case we define deep convective cores to be 1m/s for at least 5km and contrast these DCCs to that reported in the literature from TWP-ICE using WRF.
- Yes.. You've heard this story before..
 But we have finally actually published this!

Collis, S., A. Protat, P. T. May, and C. Williams, 2013: Statistics of Storm Updraft Velocities from TWP-ICE Including Verification with Profiling Measurements. Journal of Applied Meteorology and Climatology, 52, 1909–1922

A taste of analysis

- For vertical velocities conditional sampling is essential.
 Take home
- In our case we define deep convective cores to be 1m/s for at least 5km and contrast these DCCs to that reported in the literature from TWP-ICE using WRF.
- Yes.. You've heard this story before..
 But we have finally actually published this!

Collis, S., A. Protat, P. T. May, and C. Williams, 2013: Statistics of Storm Updraft Velocities from TWP-ICE Including Verification with Profiling Measurements. Journal of Applied Meteorology and Climatology, 52, 1909–1922

A taste of analysis

- For vertical velocities conditional sampling is essential.
 Take home
- Pleasingly the VERY strongly forced DCCs from a MC3E case are much stronger.

North, K., S. Collis, S. Giangrande, and P. Kollias, 2013: Vertical Velocity Retrievals in Convective Clouds using the ARM Heterogeneous Radar Network at SGP during MC3E Part I: Evaluation. **In preparation**.

Conclusions

- The key is microphysical and dynamical comparison across scales.
- Fine scale models are key, but these must be constrained using observations.
- Remote sensing retrievals provides a key tool to cross these scales but the techniques and assumptions in these retrievals must be vetted!

Products:

3D Vertical Velocity:	Profiles:	Rainfall:
SGP: Evaluation	SGP: Development	SGP: Evaluation
TWP: TB PI product	TWP: Development	TWP: Development
Scott Collis	Scott Giangrande	Scott Collis
Kirk North	Virendra Ghate	Scott Giangrande
	Christopher Williams	Adam Theisen

