Prove 1t! ARM’s Progress Towards a Suite of
Verified Precipitating Cloud System Retrievals

CLIMATE RESEARCH FACILITY

Scott Collis, Scott Giangrande, Jonathan Helmus, Kirk North, Christopher Williams, Virendra

Ghate, Adam Theisen and Alain Protat
{¢ENERGY !



The Big Picture: Comparison Across Scales

=  ARM’s programmatic objective is to improve the understanding and
representation, in climate and earth system models, of clouds and aerosols as well
as their interactions and coupling with the Earth’s surface.

= Direct measurements are great but only remote sensing measurements come
close to the domain of a ESM/GCM grid scale.
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Our approach:

=  Work with Pis and existing retrieval code if possible.
= Improve if needed. Make robust, make ubiquitous as possible.
= Build using common data models so no special cases

= Prove it! Do our retrievals make sense? How do they compare to independent
data sources. Unproven retrievals can lead to Garbage in Garbage out.

= Of course we recognize comparing two retrievals is not a ground truth.. Butitis a
start, especially when different methodologies are used and assumptions made.

=  ARM is IDEAL for this approach, we have Multi-scale independent measurements!

Prove it!




Case 1: Precipitation Rates at the Southern Great
Plains

= The data source: Scanning 5cm and
3cm wavelength radars.

= The desired product: Rain rates in
mm/h at the surface, resolving fine
scale structure but covering a domain
equivalent to a GCM grid cell on
Process scale time scale.

=  Method: Use Polarimetric phase
information which is calibration
robust and insensitive to atmospheric
attenuation combined with highly
sensitive reflectivity factor data to
retrieve specific attenuation (dBZ/km)
and use this to retrieve rain rates.

Giangrande, Collis, Theisen and Tokay, Precipitation Estimation from the
ARM Distributed Radar Network During the MC3E Campaign, JAMC, In
Revision
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Prove it!
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Prove it!
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Now how can we use rain rates?

= Rainis what happens when we get a
precipitating cloud system!

= The structure of the rain is dictated by
the structure of the underlying system
dynamics and microphysics, a MCS
with defined convective, stratiform
and transition elements produces a
different rainfall “pattern” than
isolated severe convection.

= So rainfall morphology can serve as a
vital metric for if the structure in a LES
or CRM model mirrors reality!

Prove it!
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Now how can we use rain rates?

= Rainis what happens when we get a
precipitating cloud system!

'
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= The structure of the rain is dictated by
the structure of the underlying system
dynamics and microphysics, a MCS
with defined convective, stratiform
and transition elements produces a
different rainfall “pattern” than
isolated severe convection.
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Case 2: Convective Vertical Velocities

»  The data source: Networks of
scanning Doppler radars

= The desired product: Three
component three dimensional wind
velocities in

= Method: Use the Doppler Velocities as
a constraint in a cost based variational
retrieval in tandem with the Anelastic
Mass Continuity equation.

= Caveats: Lots of assumptions, W=0 at
TOA and surface, do we adequately
resolve convergence and divergence?

Prove it!

12



Case 2: Convective Vertical Velocities

»  The data source: Networks of
scanning Doppler radars

= The desired product: Three
component three dimensional wind
velocities in

=  Method: Use the Doppler Velocities as
a constraint in a cost based variational
retrieval in tandem with the Anelastic
Mass Continuity equation.

= Caveats: Lots of assumptions, W=0 at
TOA and surface, do we adequately
resolve convergence and divergence?

‘ Prove it! _
o\ : 13



Wind Speed (m/s)y &
e 15, R

R 112~

e
-
-
i

=

. - .
—— 3‘4 D ‘-'-"-._‘ -
g T,
= -

5

Prove it!

b

14



Prove It!

= |n this case our independent data
source are profiling radars which
more directly measure the vertical
velocity.
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= |n Darwin this is a Dual Frequency
(VHF/UHF, 915/50MHz) system. Non-
ideal location.

= |nthe Southern Great Plains it is a
network of UHF profiler systems
ideally located at the multi-Doppler
“sweet spots”

= Not a “direct measure” of vertical
velocity by any means, but completely
independent and more direct.

Prove it!
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Prove it!

In this case our independent data
source are profiling radars which
more directly measure the vertical
velocity.

In Darwin this is a Dual Frequency

(VHF/UHF, 915/50MHz) system. Non-

ideal location.

In the Southern Great Plains it is a
network of UHF profiler systems

ideally located at the multi-Doppler

“sweet spots”
Not a “direct measure” of vertical

velocity by any means, but completely

independent and more direct.
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A taste of analysis

=  For vertical velocities conditional

sampling i
Take home

= |nour case we define deep convective
cores to be 1m/s for at least 5km and
contrast these DCCs to that reported
in the literature from TWP-ICE using

WREF.

= Yes.. You've heard this story before..
But we have finally actually published

this!
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Collis, S., A. Protat, P. T. May, and C. Williams, 2013: Statistics of Storm Updraft Velocities from TWP-ICE Including Verification
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A taste of analysis
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A taste of analysis

DCC Updraft Percentiles during 23rd May 2011
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North, K., S. Collis, S. Giangrande, and P. Kollias, 2013: Vertical Velocity Retrievals in Convective Clouds using the ARM
Heterogeneous Radar Network at SGP during MC3E Part I: Evaluation. In preperation.
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Conclusions

= The key is microphysical and dynamical comparison across scales.

= Fine scale models are key, but these must be constrained using observations.
= Remote sensing retrievals provides a key tool to cross these scales but the

technigues and assumptions in these retrievals must be vetted!

Products:

SGP: Evaluation
TWP: TB PI product
Scott Collis

Kirk North

3D Vertical Velocity:

Profiles:

SGP: Development
TWP: Development
Scott Giangrande
Virendra Ghate
Christopher Williams

Rainfall:

SGP: Evaluation
TWP: Development
Scott Collis

Scott Giangrande
Adam Theisen
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