Chamber/Model/Field Crosscutting Activities

Leads: Rahul Zaveri & Tim Onasch

Salient Features of an Aerosol Model Suitable for Use in Climate Models

- The model must be able to reliably predict the following climate-relevant end points:
 - Mass concentration
 - Number-diameter distribution
 - Composition (O:C ratio, functional groups, etc.) and mixing state,
 which together control
 - Hygroscopicity/CCN activity
 - Optical properties
 - Ice nucleation activity
- The model must be reasonably compact and computationally efficient

Purpose of Crosscutting SOA Activities

Present Challenges

- SOA processes and properties to be studied within each of the three focus areas (Viscosity/Phase, Growth Mechanisms, and Inorganics as a Trigger for SOA) can interact with each other.
- Single PI laboratory/chamber studies typically do not address all the climate-relevant endpoints associated with SOA formation.
- Existing SOA models differ in approaches, assumptions, levels of detail, and none of them predict all the climate-relevant end points.

The goal of crosscutting activities is to compile the process-level knowledge/data to be obtained within each SOA focus area with a **holistic** model development and evaluation strategy.

Crosscutting Activities

Laboratory Campaigns

 Design and carry out multi-PI collaborative chamber studies to simultaneously measure many different properties and climaterelevant end points associated with SOA formation under well-defined conditions.

Holistic Model Development

 Use detailed laboratory data sets to develop, constrain, and evaluate a holistic aerosol model that is capable of predicting SOA via all the different physical and chemical pathways along with all the climaterelevant end points.

Field Campaigns

 Design and carry out field campaigns that allow us to properly constrain and evaluate all the key aspects of the model using comprehensive field observations.