Evaluating a model of mixedphase cloud processes using radar Doppler spectra

Guo Yu

J. Verlinde, E.E. Clothiaux A. Avramov, A. S. Ackerman, and A. M. Fridlind

Methodology

- Data (ISDAC 8 April 2008 Golden case)
 - KAZR spectra
 - Model: DHARMA
 - Size resolved bin microphysics (drops, dendrites, aggregates): mass and fall speeds
 - Vertical velocity: mean and variance
 - Doppler spectrum simulator
 - Liquid/dendrites: small particle scattering theory
 - Aggregates: Generalize Multi-particle Mie (Botta et al.)
 - Adjusted for model/radar volume differences
 - Processing
 - Reflectivity (dBZ)
 - Volume-mean air velocity (w_{est})
 - Volume-mean Doppler velocity (V_D)
 - Hydrometeor fall speed (V_{fs})
 - Compare in-cloud histograms
 - One slice through model
 - One hour of KAZR data

Vertical velocity comparisons

- Velocity offset (a) depends on sub-volume turbulence and LWC
 - Model resolved -0.02 m s⁻¹
 - Model retrieved 0.17 m s⁻¹ (bias expected)
 - Radar retrieved 0.40 m s⁻¹
- Model underestimation may be caused l²/₂
 - Underestimation of broadening (model)
 - Underestimation of LWC (model)
 - Shear across volume
 - Radar processor artifact

Radar moment comparisons

- Two simulations: high- and low density ice (dendrite & aggregates)
- Low density:
 - Match precipitation dBZ
 - Cloud top dBZ high
 - Match V_D
 - Spectrum width too small
 - V_{fs} too small
- High density:
 - Precipitation dBZ low
 - Cloud top dBZ high
 - Match V_D
 - Spectrum width too small
 - V_{fs} too small
- Broadening?
- Reflectivity weighting?

Turbulence: $\sigma^2 = \sigma_w^2 + \sigma_s^2 + \sigma_d^2 + \sigma_B^2$

- Beamwidth (σ_B) no issue (narrow beam)
- Sub-volume turbulence width (σ_w) comparison OK (Shupe et al 2008)
- Discrepancy from
 - Shear (σ_s) [dynamical broadening]
 - PSD width (σ_d) [microphysical broadening]
- Microphysical broadening
 - No impact on air motion (also underestimated)
- Dynamical broadening
 - No good observations of vertical air motion
 - Increase (σ_s) by factor of three
 - Much better model/radar match
 - No physical basis: model physically consistent

Final comparisons

- With artificial dynamical broadening
 - Spectrum width comparison better
 - Mean fall speeds closer, but distribution off
 - PSD offsets? Reflectivity weighting offsets?

- What have we learned?
 - Using radars to evaluate models is deceptively easy
 - Must represent model ice characteristics in scattering model consistently (Must treat radar backscatter cross sections with care)
 - Must characterize ice better in observations (size, aspect ratio, mass, ice mass distribution in ice crystal)