Update on a New Approach for Parameterizing Microphysics by Predicting Multiple Ice Particle Properties

Hugh Morrison

National Center for Atmospheric Research (MMM division)

and

Jason Milbrandt

Environment Canada (RPN-A)

Thanks to: Greg Thompson, Sarah Tessendorf, George Bryan, Kyoko Ikeda

ASR Science Team Meeting ICEPRO breakout session March 10, 2014

A new microphysics scheme has been developed that predicts particle properties (mean density, size, rime fraction, etc.) for a single ice "category":

- Predicted Particle Properties – One Category (P3-1C)

This contrasts with current schemes that partition different types of using pre-defined categories like cloud ice, snow, graupel, etc.

Some conceptual advantages:

- smooth evolution of ice particle characteristics
- avoids unphysical/poorly constrained thresholds for conversion between pre-defined ice-phase classes
- more consistent application of microphysical processes
- particle properties are real physical quantities that can be observed, conversion thresholds are not → better linkage with observations
- fewer prognostic variables \rightarrow fast code!

Bulk ice particle properties are predicted with four degrees of freedom

- Prognostic variables: q_c, q_p, N_p, q_i*, N_i, q_{rim}, B_{rim}
- The four prognostic ice variables can capture evolution from all modes of ice growth (deposition, aggregation, riming → dry and wet growth)

$$^*q_i = q_{dep} + q_{rim}$$

Details of the scheme and simulation results are in Morrison and Milbrandt (2014) and Morrison et al. (2014), submitted to JAS

Two cases tested using WRF-ARW:

- June 20, 2007 Oklahoma squall line
- December 12-13, 2001 frontal/orographic precipitation in Washington/Oregon (IMPROVE-2)

Microphysics schemes tested:

P3-SINGLE CATEGORY (P3-1C) MILBRANDT-YAU (MY2) MORRISON-HAIL (MOR-H) MORRISON-GRAUPEL (MOR-G) **THOMPSON (THO)** WRF SINGLE-MOMENT (WSM6) WRF DOUBLE-MOMENT (WDM6)

Squall line results

• WRFv3.4.1, $\Delta x = 1$ km, 3D quasi-idealized setup

WRF Results: Reflectivity at 1 km height, t = 6 h

Frontal/orographic case: December 13-14, 2001, IMPROVE-2

• WRFv3.4.1, $\Delta x = 3$ km, 72 stretched vertical levels

Simulated lowest level radar reflectivity at 0Z December 14

Accumulated surface precip from 14Z December 13 to 8Z December 14

Precip differences relative to P3-1C

 P3-1C produces the smallest RMSE relative to surface precip observations among all schemes.

Accumulated surface precip from 14Z December 13 to 8Z mmDecember 14

25

15

5

-5

-15

-25

Timing tests

	Squall line case	Orographic case	Number of
			prognostic variables
P3-1C	0.436	0.686	7
MY2	0.621	1.012	12
MOR-H	0.503	0.813	9
тно	0.477	0.795	7
WSM6	0.418	0.677	5
WDM6	0.489	0.777	8

*Total time step run time (sec), averaged from 4-7 h for the squall line and 12-36 h for IMPROVE-2 .

Summary

- A new approach for parameterizing microphysics has been proposed that predicts ice particle properties for a single "category" instead of separating ice into different pre-defined categories like cloud ice, snow, graupel.
- Initial testing of P3-1C for squall line and orographic precipitation cases is promising → good results relative to observations and computationally efficient.
- Significantly more testing is needed → P3-1C will be included in the 2014 spring OU CAPS ensemble.
- Testing of the scheme for MC3E cases will begin shortly. We plan to couple the predicted properties directly with a polarimetric radar simulator.