Shallow cloud structure and organization under suppressed conditions in AMIE/DYNAMO

Angela Rowe and Robert Houze, Jr. University of Washington

ASR Science Team Meeting Potomac, MD 13 March 2014

AMIE/DYNAMO

Ealadga and Houze (2013)

Active periods: Increased rainfall/organization

Suppressed periods: Reduced rainfall, shallower convection, dry mid-levels

October

5 October

6 October

Lima and Wilson (2008) Amazon (TRMM-LBA)

Summary

- As near active period, increase rain, deeper echo, more cells
- Convection forming along boundary layer features (rolls, cloud lines) produce cold pools during afternoon
 - New initiation focused along gust front
 - More numerous and deeper convection when gust fronts intersect
- Same for November (December is odd...)

Next steps

- Characterize periods and properties of cloud lines (environment, frequency, diurnal cycle, nonprecipitating clouds)
- Manually document cold pools (maximum diameter, parent convection characteristics)
- Continue to search for times when gust front moves over Gan ARM site and relate to radar data

Funded by NSF Grant #AGS-1059611 and DOE Grant #DE-SC0008452