Aspect ratios of natural ice crystals from in-situ observations

Junshik Um and Greg M. McFarquhar University of Illinois 03/10/2014

Overview

- Ice Crystal Ruler (IC-Ruler) measures dimensions of ice crystals was developed
- Dimensions of columns, plates, and individual branches of bullet rosettes from CPI images
 - 2006 TWP-ICE, Tropics
 - 2008 ISDAC, Arctic
 - 2010 SPARTICUS, mid-latitudes
- What controls aspect ratio of ice crystal?
 Systemic difference between geophysical locations?

Identifying center

BR

> Projected maximum dimension (D')

BR

Projected maximum dimension (D')
 Projected width (W')

Column

Column

Projected maximum dimension (D') Projected width (W')

HCOL

> Horizontally oriented columns, L = L'

HCOL

Projected Maximum dimension (D')
 Projected Width (W')
 Projected Length (L')

Plate

Plate

Projected maximum dimension (D') Projected length (L')

IC-Ruler Measurements

Field Campaign	T (°C)	RHi (%)	Number of samples			
			Column (HCOL)	Plate	Bullet rosette (# of branch)	
TWP-ICE	-81.518.3	NA	1977 (430)	2088	751 (4750, 6.3±1.3)	
ISDAC	-39.41.0	37.6 - 137.5	2678 (827)	348	761 (3770, 5.0±1.0)	
SPARTICUS	-66.9 – -9.6	8.1 - 199.7	4538 (1175)	1079	3377 (19807, 5.9±1.3)	
Total			9193 (2432)	3515	4889 (28327, 5.8±1.3)	

Column D'vs T

> D' increase with T

Bullet D'vs T

- D' increase with T
- Same trend for other dimensions and crystals

Column D' vs RH_i

No clear dependence on RHi
 Largest dimensions at ~ 100%

Bullet D' vs. RH_i

No clear dependence on RHi
Largest dimensions at ~ 100%

Column D'vs W'

Relationship between D' and W', i.e., area ratio depends on T

Bullet D'vs W'

Relationship between D' and W', i.e., area ratio depends on T

Column D'vs W'

Given D'range, mean W' increases with T

Column D'vs W'

Given D'range, no dependence of mean W' on RH_i

Bullet D'vs W'

Aspect ratio (W'/D') increases as # of branch decreases

Geophysical Location

-39.15 < T < -18.30 °C measurements for all three campaigns

No clear dependence
Small samples in TWP-ICE
Further analysis

Summary & Future Work

- Dimensions increase with T
- No clear dependence of RH_i
- Given L' or D', aspect ratio (W'/L' or W'/D') increases with T
- Aspect ratio of bullet increases as # branch decreases
- No clear dependence on geophysical location (further analysis required)

- Iterative approach to take into account impact of particle orientations on measured dimensions
- Particle habit classification database

IC-Ruler

IC-Ruler D' / CPIView D' = 1.0042 ± 0.06915

Ice Crystal Structure

- **D** : Maximum dimension
- W: Width
- L : Length

Horizontally Oriented Column L'vs T

Plate D'vs T

Horizontally Oriented Column L' vs RH_i

Plate D' vs RH_i

HCOL D'vs W'

Relationship between D' and W', i.e., area ratio depends on T

HCOL D'vs W'

Given D'range, mean W' increases with T

Bullet D'vs W'

Given D'range, mean W' increases with T

HCOL D'vs W'

Given D'range, no dependence of mean W' on RH_i

Bullet D'vs W'

Given D'range, no dependence of mean W' on RH_i

SPARTICUS

Flight Date	T (°C)	RHi (%)	Number of samples		
			Column (HCOL)	Plate	Bullet rosette (# of branch)
0119A	-56.018.8	17.8 - 123.3	619 (168)	38	199 (1071, 5.4±1.1)
0120A	-59.343.3	42.4 - 148.4	648 (166)	48	592 (3489, 5.9±1.2)
0120B	-58.111.6	9.2 - 63.5	436 (96)	30	318 (1817, 5.7±1.3)
0211B	-47.831.5	85.1 - 127.6	214 (45)	14	576 (3495, 6.1±1.3)
0323A	-60.412.4	53.6 - 181.7	133 (39)	10	51 (314, 6.2±1.1)
0330A	-60.226.8	47.8 - 141.8	120 (38)	14	105 (696, 6.6±1.1)
0330B	-58.529.9	63.6 - 141.1	235 (56)	25	236 (1206, 5.1±1.1)
0401A	-54.238.0	19.9 - 199.7	374 (92)	6	482 (2825, 5.9±1.3)
0401B	-51.621.7	58.6 - 139.3	164 (31)	31	216 (1387, 6.4±1.4)
0402A	-59.318.6	65.9 - 146.8	209 (60)	11	41 (271, 6.6±1.0)
0414B	-52.530.6	63.4 - 166.3	193 (58)	76	109 (566, 5.2±1.3)
0422B	-62.710.2	28.9 - 133.4	110 (29)	131	7 (38, 5.4±1.1)
0424A	-48.314.3	59.9 - 141.0	190 (36)	210	136 (708, 5.2±1.2)
0428A	-66.950.7	8.1 - 117.1	180 (65)	3	4 (22, 5.5±1.0)
0428B	-65.831.3	12.9 - 137.8	295 (86)	12	104 (595, 5.7±1.2)
0429	-64.59.6	16.1 - 141.5	88 (21)	5	106 (719, 6.8±1.1)
0614	-52.320.0	80.5 - 154.0	138 (57)	185	12 (64, 5.3±1.1)
0615A	-51.119.7	56.8 - 123.4	54 (8)	215	5 (21, 4.2±0.8)
0624A	-50.628.9	81.9 - 145.4	138 (24)	15	78 (503, 6.4±1.2)
Total			4538 (1175)	1079	3377 (19807, 5.9±1.3)

TWP-ICE

Flight Date	T (°C)	RHi (%)	Number of samples			
			Column (HCOL)	Plate	Bullet rosette (# of branch)	
0125	-70.251.4	NA	294 (80)	20	74 (432, 5.8±1.1)	
0127	-81.545.5	NA	289 (64)	63	84 (551, 6.6±1.3)	
0129	-74.537.7	NA	299 (54)	15	372 (2488, 6.7±1.3)	
0202	-67.818.3	NA	282 (75)	143	90 (559, 6.2±1.3)	
0206	-73.140.2	NA	271 (78)	439	0	
0210	-78.740.5	NA	394 (46)	1049	0	
0212	-72.734.1	NA	148 (33)	359	131 (720, 5.5±1.2)	
Total			1977 (430)	2088	751 (4750, 6.3±1.3)	

ISDAC

Flight Date	T (°C)	RHi (%)	Number of samples			
			Column (HCOL)	Plate	Bullet rosette (# of branch)	
0404	-39.41.0	68.7 - 133.2	745 (272)	84	45 (260, 5.8±1.0)	
0405	-38.314.0	69.2 - 135.1	325 (91)	50	21 (116, 5.5±0.8)	
0413	-33.716.4	87.8 - 115.4	72 (13)	9	37 (227, 6.1±1.5)	
0419	-33.58.5	53.8 - 110.8	409 (121)	19	304 (1455, 4.8±1.0)	
0425	-36.04.0	67.8 - 137.5	634 (175)	126	279 (1361, 4.9±0.8)	
0427	-36.316.5	37.6 - 133.0	493 (155)	60	75 (351, 4.7±0.9)	
Total			2678 (827)	348	761 (3770, 5.0±1.0)	

1. Today I will show measurements of ice crystals' dimensions.

2. Ice crystal ruler measuring dimensions of ice crystals was developed.
Dimensions of columns, plates, and individual branch of bullet rosette are measured from CPI images.
Three field campaigns data were used.
Ultimate questions to be answered are what controls aspect ratio of ice crystals?
Is there any systemic difference between geophysical locations?

3. Let me explain IC-Ruler Here is 8 branches bullet rosette.

4. First we identifying center.

5. Here projected maximum dimension of individual branch is shown. Ice crystals are 3 dimensional object, but dimensions shown in CPI images are 2 dimensional and they projected dimensions.

6. Next projected widths are shown.

7. Next one is a column.

8. Here projected maximum dimension and width are shown.

9. We distinguished horizontally oriented columns.

We a column has horizontal orientation respective to the image plane, its shape becomes rectangular. In this case, the projected length and real length are same.

10. Projected maximum dimension, width, and length are measured for horizontally oriented columns.

11. Here is a plate.

12. For plates, projected maximum dimension and length are measured.

13. From three field campaigns, lots of ice crystals were measured.

14. Here are some results.

Projected maximum dimensions of column increase with T.

15. Same story for bullet and all dimensions we measured.

16. No clear dependence on RHi is shown.

17. Same story for bullets.

18. This figure shows column projected maximum dimension and width as function of temperature. Temperature dependence is shown.

19. Same story for bullet.

20. This is more close look. For given maximum dimension, width increases with Temperature.

21. But, no dependence on RHi.

22. This figure shows relationship between bullet maximum dimension and width.Different colors indicate number of branch.Aspect ratio increases as # of branch decreases.

23. At this temperature range, all three campaigns have crystal measurements.Column and bullet aspect ratios as a function of maximum dimension are shown.No clear dependence on geophysical location is shown, but more analysis will be made.

24. Here is summary and I will not gonna repeat.

We are working on an iterative approach.

It considers relationship between particle orientations and projected dimensions for real L and W relationship. And we are also working on particle habit database.