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Motivation 

• Accurate quantification of liquid water path (LWP) in 
clouds critical for many atmospheric studies 

• Microwave radiometers are the basic observational tools 
used to measure LWP 

• A large fraction of liquid-bearing clouds are supercooled 
(i.e., Tcloud < 0°C) 

• There are very few laboratory observations of water vapor 
absorption coefficient in microwave at supercooled temps 

• Consequentially, microwave absorption models use semi-
empirical models that are fit to warm lab data and 
extrapolate to supercooled temps 

• Translation: a lot of uncertainty in LWP for Tcloud < 0°C !! 
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Absorption differences between models 

• MEI: Meissner and Wentz (2004) 
• RAY: Ray (1972) 
• LIE: Liebe et al. (1991, 1993) 
• STO: Stogryn et al. (1995) 
• ELL06: Ellison (2006) 
• ELL07: Ellison (2007) 
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Impact on retrieved LWP 
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Datasets used 
• AMF Black Forest Deployment  

• 31, 52, 90, 150 GHz;  500 m MSL 
• Zugspitze, Germany  

• 31, 52, 90, 150 GHz;  2650 m MSL 
• Summit Station, Greenland  

• 31, 52, 90, 150, 225 GHz;  3200 m MSL 

MWRs at Summit 
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Opacity ratios are the key 

• The total opacity    is derived from MWR Tb obs as  
 
 

• The total opacity is  
• Mätzler et al. (2010) presented a method to separate  

from       and      using the temporal variability of the liquid 
• Assuming cloud temp is fixed for a given cloud, then 

 
• Thus, the ratio of the fast opacity changes btwn two freqs 

is  
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Opacity changes example from Summit 
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Opacity ratios: Models vs. Obs 
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Absorption coefficient: Models vs. Obs 
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Building a new model 
• Previous models built using laboratory measurements to 

constrain semi-empirical models 
• Lab observations typically at temps between 0 and 100°C 

• 70% of lab measurements between 0 and 30°C 
• Observations span frequencies from 0.5 to 900 GHz 

• 87% of lab measurements are at frequencies below 60 GHz 
• Most models assume a “double Debye” form (9 parameters) 
• Ellison (2007) packaged the lab data into an easy-to-use 

format 
• Added our opacity ratio obs at supercooled temps to dataset 

• Used absorption by Stogryn model at 90 GHz to translate these 
opacity ratios into absorption coeffs at 31, 52, 150, and 225 GHz 

• Supported by Cadeddu and Turner (2011), Mätzler et al. 2010 
• Used optimal estimation to fit new parameters for a double-

Debye model 
• Uncertainty estimates and information content provided as result 
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Fitting the new model 
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Evaluating the new model: Lab data (1) 
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Evaluating the new model: Lab data (2) 
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Evaluating the new model: Lab data (3) 
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Evaluating the new model: Lab data (4) 
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Evaluating the new model: Field data 
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Conclusions 
• Multi-freq MWR obs at 3 diff locations demonstrate that: 

• Current liquid water model used by ARM (Liebe) isn’t very accurate, especially 
for higher frequencies  

• Stogryn model seems the best for freqs < 100 GHz 
• Ellison 2007 model seems the best for freqs > 100 GHz 
• No current model properly captures the temp and freq dependence 

 
• A new absorption model was created using lab and field data 

• Used optimal estimation framework; thus have uncertainties and DFS 
• Had to assume Stogryn model at 90 GHz was accurate to convert the opacity 

ratios from field data into absorption coefficients 
• New model fits both lab and field data well over from -32 < Tcloud < 100 °C and 

0.5 < freq < 500 GHz 
 

• Kneifel et al., JAMC 2014, in press 
• Discusses opacity ratio technique and evaluation of current models 

• Turner et al., in preparation 
• Describes the new LW microwave absorption model 
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