

MBL Drizzle Properties and Their Impact on Cloud Property Retrievals

Xiquan Dong Peng Wu and Baike Xi University of North Dakota

Different types of Drizzles below Cloud Base

Virga: wisps or streaks of water particles falling out of a cloud layer but evaporating before reaching the earth's surface as precipitation. (AMS, 2014)

Rain: drizzle particles falling to the surface as precipitation

Separate virga/rain periods

Given the absence of disdrometer measurements at the Azores, we use a similar method as described in *Rémillard et al*. [2012] to identify virga and rain. (daytime low level clouds only)

Precp. Type	Echo Base	Base Reflectivity
virga	> 200 m	≥ -37 dBZ
rain	< 200 m	\geq -37 dBZ

Scientific Questions:

(1)What are the microphysical properties of drizzle below MBL cloud base during virga/rain periods?
(2)How much can drizzle particles underneath MBL clouds affect the cloud microphysical property retrievals?

To answer above questions, we

- (1) retrieved the microphysical properties of virga and rain drizzle under cloud base (case studies and statistical results will be shown)
- (2) quantitatively estimated the impact of drizzle on cloud property retrievals.

Retrieval Methods

 Drizzle: follow O'Connor et al., [2005], normalized gamma distribution, basic equation:

•
$$\frac{Z}{\beta} = \frac{2}{\pi} \frac{\Gamma(7+\mu)}{\Gamma(3+\mu)} \frac{S}{(3.67+\mu)^4} D_0^4$$

- Z: WACR reflectivity, β: lidar backscatter coefficient
 μ: shape parameter, S: lidar ratio, D₀: median diameter
- Cloud: follow Dong et al., [1998], lognormal distribution, $\overline{r_c}$ during the daytime was parameterized as :
- $\overline{r_c} = -2.07 + 2.49 LW P_c + 10.25 \gamma 0.25 \mu_0 + 20.28 LW P_c \gamma 3.14 LW P_c \mu_0$
- LWP_c: cloud liquid water path, γ: solar transmission ratio, μ₀: cosine of solar zenith angle

Drizzle Properties-cases

 $\overline{r_d}$ in both Cases are nearly 3-4 times larger than $\overline{r_c}$ of MBL cloud-droplet at the Azores (12.5-12.9 mm, *Dong et al.*, 2014a and 2014b).

 $\overline{N_d}$ in both cases are two orders of magnitude lower than $\overline{N_c}$ of MBL at the Azores (66-82.6 cm⁻³, Dong et al., 2014a and 2014b)

Drizzle Properties-statistics

Drizzle Properties-statistics

rain virga r_d larger smaller Mode 30-150 μm 30 μm Both with long tail towards large values

Most of the N_d values for both virga and rain samples are located at the tail end with nearly 70-80% less than 0.2 cm⁻³ and slightly more virga samples for large values

Almost all virga LWP_d values are less than 10 g m⁻² and ~80% less than 3 g m⁻², while only 18% of the rain samples are less than 3 g m⁻²

New Cloud Properties

 $\overline{r_c} = -2.07 + 2.49LWP_c + 10.25\gamma - 0.25\mu_0 + 20.28LWP_c\gamma - 3.14LWP_c\mu_0$

Dong98: LWP_c= LWP_{MWR}

New : $LWP_c = LWP_{MWR} - LWP_{drizzle}$

These newly retrieved cloud properties (r_c , N_c , τ) are then compared with the original retrievals in *Dong et al.* (2014a)

Drizzle Impact on Cloud Property Retrievals

Drizzle Impact on Cloud Property Retrievals

Drizzle Impact on Cloud Property Retrievals

Dash lines: 95% confidence interval, true best-fit line for the samples have 95% probability to fall within the intervals. The narrow intervals for panel (a), (b), and (c) suggest high reliability of the regression, whereas for the broad interval in panel (d) indicates relatively large uncertainty of the regression

Seasonal Variations

rain $LWP_d \approx 4^*$ virga LWP_d seasonal mean LWP_d < 4%*LWP. The seasonal differences fall within the cloud property retrieval uncertainty (~10%). Therefore, their impact on cloud property retrievals is insignificant except for some individual cases which has relatively intense precp.

<u>Summary</u>

- • Drizzle occurrence is 42.6% for the selected samples.

 LWP_d (g m⁻²)
 r_d (μm)
 N_d (cm⁻³)

 virga
 1.29
 39.5
 0.14

 rain
 5.48
 68.7
 0.38
- The annual mean differences of r_c are 0.12 and 0.38 µm for the virga and rain samples, respectively. These differences fall within the cloud property retrieval uncertainty (~10%). The impacts of drizzle on clouddroplet number concentration (optical depth) are also small, presumably due to small changes in both *LWP_c* and r_c . Therefore, we can conclude that the impact of drizzle on cloud property retrievals is insignificant.

THANK YOU FOR YOUR ATTENTION!

QUESTIONS?

Drizzle Retrieval Algorithm

Method for Calculating the drizzle microphysical properties:

where

• The ratio of radar reflectivity to lidar backscatter is proportional to the fourth power of drop size(O'Connor et al. 2005), assume size distribution as normalized gamma distribution of the form:

$$n(D) = N_W f(\mu) \left(\frac{D}{D_0}\right)^{\mu} exp\left[\frac{-(3.67+\mu)D}{D_0}\right]$$
(1)
 N_W is the concentration normalized, D_0 is median diameter,

μ is shape parameter, $f(μ) = \frac{6}{3.67^4} \frac{(3.67+μ)^4}{Γ(μ+4)}$

• Lidar extinction coefficient is defined as $\alpha = \frac{\pi}{2} \int_0^\infty n(D) D^2 dD$. Lidar backscatter coefficient, β is given by $\alpha = S\beta$, where *S* is termed of lidar ratio (extinction-to-backscatter ratio) and can be estimated using Mie theory.

O'Connor, Ewan J., Robin J. Hogan, Anthony J. Illingworth, 2005: Retrieving Stratocumulus Drizzle Parameters Using Doppler Radar and Lidar. J. Appl. Meteor., 44, 14–27.

Retrieval algorithm (cont')

• The ratio of radar reflectivity to lidar backscatter can be derived as:

$$\frac{Z}{\beta} = \frac{2}{\pi} \frac{\Gamma(7+\mu)}{\Gamma(3+\mu)} \frac{S}{(3.67+\mu)^4} D_0^4$$
(2)

- First assuming μ=0 and D₀ can be estimated, refine the estimation by comparing calculated spectral width with radar observed spectral width, adjusting μ and computing until convergence. Then N_W can be calculated from radar reflectivity.
- Now we can calculate drizzle LWC and number concentrations Nd as follows:

$$LWC_{d} = \rho_{l} \frac{\pi}{6} \int_{0}^{\infty} n(D) D^{3} dD$$
 (3)

$$N_d = \int_0^\infty \mathbf{n}(\mathbf{D}) \, \mathrm{d}\mathbf{D} \tag{4}$$

• The ratio(R) of drizzle LWP to total LWP is

$$R = \frac{LWP_d}{LWP_t} \tag{5}$$

where LWP_t is the liquid water path(cloud plus drizzle) measured by microwave radiometer.

Effect of drizzle on cloud

Wood (2005) found that the sub-cloud layer with drizzle is generally cooler and wetter than drizzlefree region, which is a result of evaporation cooling and suggest a possible evaporative dynamic feedback.

FIG. 11. Difference between the mean subcloud virtual potential temperature (θ_v , abscissa) and mean total water (q_T , ordinate) in drizzle regions and drizzle-free regions for suitable subcloud runs. The dashed line corresponds to differences caused purely by evaporation.

Table 1. Nine (Ground-Based Cloud Retriev	al Products at Five ARM	Sites Along With Their Primary N	Microphysical Prod	ucts, PI Contact Inf	ormation and References ^a			
Products	Microphysical Products	Contact PIs	Affiliations	Sites	Clouds	References			
MICROBASE	LWC, liquid r _e Mike Jensen; IWC, ice r _e Maureen Dunn		Brookhaven National Lab	All 5 sites	Liquid	Liao and Sassen [1994]; Frisch et al. [1995]			
	, <u> </u>				Ice	Liu and Illingworth [2000]; Ivanova et al. [2001]			
	nnrovimate Uncertai	nties in the Major	Cloud Microphysical P	roperties Deriv	ved From Diff	ferent Retrievals in N	ine Cloud		
Droducta Da	pproximate Officertal	nues in the Major	Ciouu wiiciopiiysicai Pi	openies Den	veu riom Din	cient reulevais in m	ine Cloud		
Products Ba	ised on Literature								
				Cloud Property Uncertainties From Literature					
Product	s	Clouds	LWP	LWC	Liquid r _e	IWC	Ice r _e		
MICRC	in CON	DDET the		ا د د نه ام م		a not			
e	in cow	DREI, the	y only classify	y arizzie	e and do	σησι			
in	voctigato t	ho import	of drizzlo on	cloud r	roport	, rotriovals			
MACE	vestigate ti	ie inipact	UT UTIZZIE UTI	ciouu p	noperty	retrievais.			
Se	far nono	of the stur	dias hava aus	ntitati	volv inv	octigated			
30	, iai, iiuiie (or the stud	ales lidve qua	iiiidli	VELY IIIV	esugaleu			

DENG $\sim 85\%$ Ice Pure liquid clouds $\sim 10\%$ SHUPE TURNER $\sim 20 - 30\%$ $\sim 10 - 50\%$ Liquid and ice in optical thin clouds $\sim 20 - 30\%$ $\sim 40 - 70\%$ $\sim 20 - 30\%$ $\sim 60 - 100\%$ Ice in other clouds $\sim 60 - 100\%$ WANG Mixed $\sim 18\%$ $\sim 18\%$ $\sim 18\%$ $\sim 10 - 100\%$ COMBRET Liquid (radar) Same as MICROBASE Ice (Z_e and σ_{ext}) $\sim 10 - 100\%$ ~30-50% Ice (Z_e) Ice (σ_{ext}) NG NG Drizzle and Rain ---RADON $\sim 30 - 40\%$ Ice VARCLOUD Uncertainties are dependent on errors in measurements and accuracy in forward Ice

the extent will drizzle impact cloud property retrievals

CLOUI

Ice part

models

a"NG" indicates that the uncertainty is not given in the literature and "-" denotes that the variable does not exist or is not retrieved for the specific cloud type.

Zhao et al., JGR, 2012 20

 $\sim 30 - 50\%$

%

 $\sim 35\%$

 $\sim 20 - 50\%$

 $\sim 20 - 50\%$

 $\sim 10 - 30\%$

 $\sim 10 - 30\%$

NG

NG

NG

 $\sim 15\%$