

Evaluation of clouds in GCMs using ARM-data:

A time-step approach

Kwinten Van Weverberg¹, Cyril Morcrette¹, Hsi-Yen Ma², Stephen Klein² and Jon Petch¹ ASR-Science Team Meeting 03-18-2014

© Crown Copyright MetOffice

¹Met Office, Exeter, United Kingdom ²Lawrence Livermore National Laboratory, Livermore, California

Midlatitude Continental Warm Bias

<u>Colours:</u> CMIP5 ensemble for 20 years <u>Dots:</u> Day 5 forecast using same GCMs

Clouds Above the US and Errors at the Surface (CAUSES)

Use ARM data to understand the <u>role of clouds</u> in the creation of the US warm bias

2 GCM simulations: 4 day global hindcasts for MC³E-period (6 weeks) in 2011

- **MetUM:** Initialised from ECMWF
 - 30 km grid spacing

- **<u>CAM5</u>**: Initialised from ERA-Interim
 - 100 km grid spacing

Compare observed and simulated time series at the SGP site

Use ARM data to understand the role of clouds in the creation of the US warm bias

Average evolution of the bias over the 4 forecast days

Use ARM data to understand the <u>role of clouds</u> in the creation of the US warm bias

4 periods of distinct bias behaviour

Evening:

T_{bias} increases

 ΔT_{bias} correlates with CF_{bias} But: Largest *increase* in T_{bias} for GCM with smallest CF_{bias}

Use ARM data to understand the <u>role of clouds</u> in the creation of the US warm bias

4 periods of distinct bias behaviour

<u>Night:</u>

 ${\rm T}_{\rm bias}$ fairly constant

Use ARM data to understand the role of clouds in the creation of the US warm bias

4 periods of distinct bias behaviour

Morning:

$T_{\text{bias}} \text{ decreases}$

 ΔT_{bias} correlates with CF_{bias} in MetUM, but not in CAM5

Use ARM data to understand the role of clouds in the creation of the US warm bias

4 periods of distinct bias behaviour

Afternoon:

T_{bias} increases

 ΔT_{bias} correlates with CF_{bias} But: Largest *increase* in T_{bias} for GCM with smallest CF_{bias}

Common practice model evaluation: establish relations between <u>averaged</u> <u>mean-state</u> biases

Common practice model evaluation: establish relations between <u>averaged</u> <u>mean-state</u> biases

→ Ambiguous since you average over many different regimes that can exhibit opposite effects
 → Many processes could be working together (clouds, land surface, boundary layer)

Common practice model evaluation: establish relations between <u>averaged</u> <u>mean-state</u> biases

- → Ambiguous since you average over many different regimes that can exhibit opposite effects
 → Many processes could be working together (clouds, land surface, boundary layer)
- → Mean-state (absolute) biases contain long **memory**, superposing previous effects

Common practice model evaluation: establish relations between <u>averaged</u> <u>mean-state</u> biases

- → Ambiguous since you average over many different regimes that can exhibit opposite effects
 → Many processes could be working together (clouds, land surface, boundary layer)
- → Mean-state (absolute) biases contain long **memory**, superposing previous effects

So, we need to look at time-step-level change in the bias (error growth) instead:

→ Error-growth T_{bias} during one time-step **unambiguously** caused by coincident biases
 → We have **observations** of sufficient temporal resolution to do so

Compositing of ΔT_{bias} (error growth) by downwelling (SW \downarrow + LW \downarrow) RAD_{bias} at Time-step level

Clouds influence surface temperature through radiation:

Compositing of ΔT_{bias} (error growth) by downwelling (SW \downarrow + LW \downarrow) RAD_{bias} at Time-step level

Clouds influence surface temperature through radiation:

- **<u>GOODRAD</u>**: Cloud properties are **unbiased** and are **not** responsible for the ΔT_{bias} at Δt
- **<u>BIASRAD</u>**: Cloud properties are **biased** and could be responsible for the ΔT_{bias} at Δt

Downwelling radiation compositing

Compositing of ΔT_{bias} (error growth) by downwelling (SW \downarrow + LW \downarrow) RAD_{bias} at Time-step level

- **<u>GOODRAD</u>**: Cloud properties are **unbiased** and are **not** responsible for the ΔT_{bias} at Δt
- **<u>BIASRAD</u>**: Cloud properties are **biased** and could be responsible for the ΔT_{bias} at Δt

Downwelling radiation compositing

Compositing of ΔT_{bias} (error growth) by downwelling (SW \downarrow + LW \downarrow) RAD_{bias} at Time-step level

- **<u>GOODRAD</u>**: Cloud properties are **unbiased** and are **not** responsible for the ΔT_{bias} at Δt
- **<u>BIASRAD</u>**: Cloud properties are **biased** and could be responsible for the ΔT_{bias} at Δt

- 12 cloud regimes defined on cloud occurrence at 3 levels
 - → Each time step assigned to observed/simulated regime pair
 - \rightarrow The coincident time step can be assigned to ΔT_{bias}
 - → Contribution of observed/simulated regime pair ij:

Fraction

- 12 cloud regimes defined on cloud occurrence at 3 levels
 - → Each time step assigned to observed/simulated regime pair
 - \rightarrow The coincident time step can be assigned to ΔT_{bias}
 - → Contribution of observed/simulated regime pair ij:

$$Contribution_{ij} = \frac{Frequency_{ij} \cdot \Delta T_{bias_{ij}}}{\left| \Delta T_{bias} \right|}$$

Compositing of ΔT_{bias} (error growth) by observed-simulated regime pair at time-step level

- 12 cloud regimes defined on cloud occurrence at 3 levels
 - → Each time step assigned to observed/simulated regime pair
 - \rightarrow The coincident time step can be assigned to ΔT_{bias}
 - → Contribution of observed/simulated regime pair ij:

$$Contribution_{ij} = \frac{Frequency_{ij} \cdot \Delta T_{bias_{ij}}}{\left|\Delta T_{bias}\right|}$$

Main contribution from correctly represented high cloud cover (4-4)

Compositing of ΔT_{bias} (error growth) by observed-simulated regime pair at time-step level

- 12 cloud regimes defined on cloud occurrence at 3 levels
 - → Each time step assigned to observed/simulated regime pair
 - \rightarrow The coincident time step can be assigned to ΔT_{bias}
 - → Contribution of observed/simulated regime pair ij:

$$Contribution_{ij} = \frac{Frequency_{ij} \cdot \Delta T_{bias_{ij}}}{\left| \Delta T_{bias} \right|}$$

Followed by missing or underrepresenting deep convection (7S)

Conclusions

Different approach in model evaluation

Focus on error-growth at time-step level rather than average mean-state bias

Three-step methodology:

- 1) Define periods in diurnal cycle with consistent temperature-bias-growth
- 2) <u>Do clouds play a role</u>? Composite the ΔT_{bias} by coincident downwelling radiation bias
- 3) Which clouds play a role? Apply regime-dependent analysis to find contribution

Results for two GCMs:

- <u>CAM5</u>: Evening T_{bias} growth due to cirrus-over-low clouds
- <u>MetUM</u>: Afternoon T_{bias} growth due to too transparent cirrus and lack of deep clouds; Too persistent boundary-layer clouds in evening and at night
- Morning bias reduction in both GCMs and afternoon bias growth in CAM5 due to other processes (e.g. albedo or turbulent fluxes)

Conclusions

Different approach in model evaluation

Focus on error-growth at time-step level rather than average mean-state bias

Three-step methodology:

- 1) Define periods in diurnal cycle with consistent temperature-bias-growth
- 2) <u>Do clouds play a role</u>? Composite the ΔT_{bias} by coincident downwelling radiation bias
- 3) Which clouds play a role? Apply regime-dependent analysis to find contribution

Results for two GCMs:

- <u>CAM5</u>: Evening T_{bias} growth due to cirrus-over-low clouds
- <u>MetUM</u>: Afternoon T_{bias} growth due to too transparent cirrus and lack of deep clouds; Too persistent boundary-layer clouds in evening and at night
- Morning bias reduction in both GCMs and afternoon bias growth in CAM5 due to other processes (e.g. albedo or turbulent fluxes)

Conclusions

Different approach in model evaluation

Focus on error-growth at time-step level rather than average mean-state bias

Three-step methodology:

- 1) Define periods in diurnal cycle with consistent temperature-bias-growth
- 2) <u>Do clouds play a role</u>? Composite the ΔT_{bias} by coincident downwelling radiation bias
- 3) Which clouds play a role? Apply regime-dependent analysis to find contribution

Results for two GCMs:

- <u>CAM5</u>: Evening T_{bias} growth due to cirrus-over-low clouds
- <u>MetUM</u>: Afternoon T_{bias} growth due to too transparent cirrus and lack of deep clouds; Too persistent boundary-layer clouds in evening and at night
- Morning bias reduction in both GCMs and afternoon bias growth in CAM5 due to other processes (e.g. albedo or turbulent fluxes)

Outlook

Knowing where to focus efforts, approach can be starting point for model development

- \rightarrow Lack of deep convection related to missing interaction with Rockies and cold pools?
- →Overestimation nocturnal boundary-layer clouds related to PBL-scheme or large-scale cloud scheme?
- \rightarrow These hypotheses will be tested for the MetUM

Approach will be part of analysis carried out on multiple GCMs within CAUSES

- →Project with observationally-based focus, which evaluates the role of clouds, radiation and precipitation processes contributing to the surface temperature biases in the central US and which are seen in several weather and climate models
- \rightarrow About 9 modelling centres so far have agreed to provide GCM-data
- →4-day hindcasts for MC3E-period as well as multi-month and multi-year AMIPsimulations

Get in touch if you would like to participate: cyril.morcrette@metoffice.gov.uk or klein21@llnl.gov

