Going Beyond Conventional Aerosol-Cloud Interaction (ACI) Parameterization Paradigm: ACI Regime

Yangang Liu¹

Jinyi Chen², Chunsong Lu^{1,3}, and Minghua Zhang²

¹Brookhaven National Laboratory, USA ²Stony Brook University, USA ³NUIST, China

Clouds may typically be less sensitive to aerosol perturbation in Nature than in large scale models due to <u>buffering (compensating) factors/processes that are</u> <u>either poorly represented or not at all in models.</u>

Going Beyond Conventional Aerosol-Cloud Interaction (ACI) Parameterization Paradigm:

Dispersion effect, entrainment-mixing effect, and couplings in context of ACI regime dependence.

Conventional ACI Regime Paradigm

- Adiabatic,
 concentration-based
- Regime dependence is nonlinear but monotonic.
- Three regimes: aerosollimited, updraft-limited, and transitional.
- Black lines represent Reuter's regime equations.

(Ghan et al)

Outstanding AIE issues are likely due to this oversimplified ACI regime paradigm most ACI parameterizations are based on.

Stronger Dispersion Regime Dependence

- Dispersion regime dependence is nonlinear and non-monotonic: dispersion peaks at some (Na, w).
- New regime equation: w* = 5 x 10⁻⁴ Na* falling between Reutter's.
- Buffering dispersion effect: Warming aerosollimited regime but cooling in updraftlimited regime.

(Chen et al. GRL, 2016)

Dispersion Effect Peaks around Where Twomey Effect Is Most Sensitive.

New ACI Parameterization

Effect of Entrainment

Relationship between Entrainment Rate and Vertical Velocity

- 102 cumuli at SGP
- Aircraft measurement
- Method for estimating entrainment rate (Lu et al., GRL, 2012)

Clouds are weakly coupled due to entrainment and mixing processes >> effect of coupling on ACI regime using

 $\lambda = 0.88 \, w^{-0.75}$

Effect of w- λ Coupling

Summary

- Dispersion has non-monotonic regime dependence.
- Dispersion effect mitigates cooling in aerosol-limited regime, but enhances cooling in updraft-limited regime.
- The unique dispersion regime provides a new ACI parameterization considering both droplet concentration and relative dispersion.
- Entrainment and couplings alter the regime behavior, lead to height dependence of ACI regime (in progress)