An Update on the AERIoe Retrieval Algorithm

Dave Turner

NOAA

Presentation at the 2016 Atmospheric System Research (ASR) PI and Atmospheric Radiation Measurement (ARM) Users’ Meeting, Tysons, Virginia, 2-6 May 2016
AERI Thermodynamic Retrieval Background

- AERI observes downwelling infrared radiance at high temporal (30-s) and spectral (1 cm\(^{-1}\)) resolution.

- IR radiance has information on the profile of temperature (T) and humidity (q), as well as cloud properties.

- Current AERI retrieval algorithm (AERIprof) developed in early 2000s, and has limitations:
 - Only able to retrieve T/q in cases with no cloud overhead
 - No uncertainty analysis provided with each retrieval
 - Carbon dioxide concentration fixed to 380 ppm (and unable to change)
 - Fixed fast RT model; unable to change for improved spectroscopy
Sensitivity of Retrieved T Profile to CO₂ Concentration

Impact Using Assumed vs. True CO₂ Profile

Atmospheric CO₂ at Mauna Loa Observatory

Scripps Institution of Oceanography
NOAA Earth System Research Laboratory

March 2015

Night
Day

Night
Day

Solid: CO₂ True vs 377 ppm
Dashed: CO₂ True vs 360 ppm
AERIloe Retrieval Background

- A physical-iterative method (like AERIprof)
- Use the LBLRTM as the forward model
 - Always have latest spectroscopy
 - Can use any trace gas (e.g., CO₂) amounts desired
- Use optimal-estimation framework
 - Propagate uncertainties into retrieved solution
 - Uses prior information (climatology of sonde data) to constrain solution (as retrieval is an ill-posed problem)
- Retrieves cloud properties and thermodynamic profiles simultaneously
 - Developed method to overcome bad first guess
 - Method converges and provides solution over 95% of the time
 - Able to also retrieve trace gas amounts (CO₂, CH₄, N₂O)
- Ultimate goal: To replace AERIprof and MIXCRA
AERIoe Example Profile

- Example from PECAN
 - Ellis, KS on 22 June 2015 at 0600 UTC
- Inputs: AERI radiances, CBH from lidar
AERIoe Example Profile

• Example from PECAN
 – Ellis, KS on 22 June 2015 at 0600 UTC

• Inputs: AERI radiances, CBH from lidar

• Inputs: AERI radiances, CBH from lidar, middle-and-upper tropospheric T/q from RAP NWP model, surface met
AERIoe Example Profile

• Example from PECAN
 – Ellis, KS on 22 June 2015 at 0600 UTC

• Inputs: AERI radiances, CBH from lidar

• Inputs: AERI radiances, CBH from lidar, middle-and-upper tropospheric T/q from RAP NWP model, surface met
LES-based OSSE
(Observation System Simulation Experiment)

• Used LES to simulate a convective boundary layer
 – Case is 24 July 2008 (Thijs Heus presentation on Wednesday)

• Simulate AERI observations
 – Compute downwelling IR radiance at 30-s resolution
 – Convolve with AERI instrument function
 – Added random noise

• Apply the PCA-based noise filter
 – Principal components derived from real AERI obs at SGP in July 2015

• Run AERIoe retrieval
 – Use prior dataset derived from SGP radiosondes for July

• Compare retrieved profiles with LES truth profiles
OSSE Results

Ambient Temperature

Potential Temperature (θ_v)

LEO Output

AERlce Retrieval

Altitude [km AGL]

Temperature [C]

Potential Temperature [K]
OSSE Results

Water Vapor Mixing Ratio

Relative Humidity

LES Output

AER|oe Retrieval

Altitude [km AGL]

Altitude [km AGL]

Hour [UTC]

Hour [UTC]

Water Vapor Mixing Ratio [g/kg]

Relative Humidity [%]
AERIoe Results from AWARE

- Computed new prior constraint dataset
- Ran retrieval
AERIoe Results from AWARE

- Uncertainties provided automatically
- Always be careful of retrieved profiles above cloud base
A Challenge at SGP Central Facility

- Oscillations noted in AERI radiance data occasionally
 - Seen in both the v4 AERI and the AERI-01
- Oscillations in radiance result in oscillations in retrieved profiles (esp water vapor)
- Mentor has traced problem to air “leaking” from optical trailer into the AERI front end
- Problem resolved Feb 2016, but need to handle historical data
Possible Approach: Insert a Chimney

SGP’s 60-m tower (with obs at 25-m also)

Chimney

25-m tower as input

$Z=0$

$Z=10$

$Z=21$

$Z=33$

$Z=46$

$Z=61$

$Z=77$

$Z=95$
Summary

• AERIoe algorithm becomes more mature by the day
• One last major modification to make: incorporating MWR brightness temperature observations
 – Improved LWP retrieval over entire dynamic range
 – Excellent constraint on the PWV
• Older version (Release_1_5) was implemented in the ARM Data Management Facility
 – Used to process some examples for LASSO
 – Used to process data from PECAN (in archive)
• New version (Release_2_1) should be provided to ARM by early summer
• Processing is still slow: takes ~2 min per spectrum. However, easily distributed to multiple processors (ARM linux cluster!)