Characterizing the vertical distribution of aerosols using multiwavelength lidar data: *Preliminary* results from the <u>Combined HSRL And</u> <u>Raman lidar Measurement Study (CHARMS) at SGP</u>

Richard Ferrare¹, <u>Tyler Thorsen^{1,2}</u>, Marian Clayton³, Detlef Müller^{3,4}, Eduard Chemyakin³, John Goldsmith⁵, Robert Holz⁶, Ralph Kuehn⁶, Ed Eloranta⁶, Sharon Burton¹, Patricia Sawamura^{1,2}, Xu Liu¹, Rob Newsom⁷, Connor Flynn⁷

¹NASA Langley Research Center
 ²NASA Postdoctoral Program
 ³Science Systems and Applications, Inc.
 ⁴University of Hertfordshire, UK
 ⁵Sandia National Laboratories
 ⁶University of Wisconsin – Madison
 ⁷Pacific Northwest National Laboratory

DOE ARM/ASR Meeting May 4, 2016

- Aerosol optical and microphysical properties are required to:
 - Impacts on radiation
 - Aerosol-cloud interactions
 - Develop and evaluate model parameterizations
- Currently, ARM measures and/or derives aerosol properties at the <u>surface</u> and <u>column average</u> properties but does not operationally measure <u>vertical</u> properties
- Multiwavelength lidar retrievals
 - Potential for operational aerosol microphysical and optical properties
 - Algorithms developed by NASA LaRC for future NASA ACE satellite mission may be suitable for DOE ARM use
 - Have been applied to numerous NASA LaRC airborne HSRL 3+2 datasets
- <u>CHARMS Objective</u>: Investigate use of combined ground-based Raman and High Spectral Resolution Lidar (HSRL) measurements to improve ARM observational capability of aerosols and clouds
 - July 18 to September 30 2015 at SGP

-) NASA
- **Input**: aerosol backscatter (3 λ) and extinction (2 λ): "3 β +2 α " profiles
- Data inversion with regularization (Müller et al., 1998,1999,2001; Veselovskii et al., 2002)
 - Assumes <u>spherical particles</u>; nonspherical particles retrievals are under investigation

• **Outputs**: effective radius (total, fine, coarse), concentration (number, surface, volume), scattering, absorption coefficients

SSA

- <u>Tikhonov regularization</u>: absorption biased high relative to in situ measurements
 Burton et al. (AGU – 2015) study on information content
 - in lidar measurements alone
 - Good retrievals of size and concentration parameters
 - Have only limited ability to produce accurate absorption

- Higher accuracy in absorption measurements requires additional constraints
 - <u>Arrange and Average</u> (Chemyakin et al., 2015) adds additional constraint/assumption on size distribution (monomodal)
 - <u>Optimal Estimation</u> retrieval methodology also being pursued at NASA LaRC
 - Leverage retrieval of aerosol type
 - Add other measurements (ex. polarimeter, Sun photometer) as constraints

Measurements (3 β +2 α)

SGP Raman lidar:

- Aerosol backscatter (355nm)
- Extinction (355nm)
- *Depolarization (355nm)

Univ. Wisconsin HSRL

- Aerosol backscatter (532, 1064nm)
- Extinction (532 nm)
- *Depolarization (532 nm)

*Aerosol type classification (Burton et al., 2012, 2013, AMT)

- Process extinction/backscatter from both instruments consistently using the FEX algorithm (Thorsen et al.; Thorsen and Fu 2015)
- 10min, 60m vertical resolution (120m for the microphysical retrievals)
- Images of results:
 - <u>http://www.tylerthorsen.com/bagohsrlfex_charms/</u>

- All images and results that follow are preliminary!
- Some artifacts in Raman (mostly) and HSRL data due to temperature and alignment fluctuations
- SGP Raman lidar performance improved after CHARMS and now comparable to ENA Raman lidar

Good agreement between CHARMS and AERONET Aerosol Optical Depth (AOD)

NASA

Microphysical retrievals performed for Sept 3-7

- Aerosol backscatter color ratio (532/1064) was much higher (>3) than expected
 - 1064 nm aerosol backscatter was too low
 - Difficulty in calibration the UW HSRL 1064nm aerosol backscatter (see Eloranta poster)

- Note variability in both aerosol loading (extinction) and type (aerosol depolarization)
- High depolarization in the afternoon (>10%: too high for reliable microphysical retrievals)
 Aerosol Extinction (532 nm)

Aerosol Depolarization (532 nm)

Tikhonov Advanced Regularization Algorithm (TiARA) - Retrieval Results (ex. Sept. 6)

- Depolarization > $10\% \rightarrow$ retrievals unreliable
- TiARA expected to give good performance for size and concentration retrievals

Tikhonov Advanced Regularization Algorithm (TiARA) - Retrieval Results (ex. Sept. 6)

- Depolarization > $10\% \rightarrow$ retrievals unreliable
- TiARA expected to give good performance for size and concentration retrievals

Arrange and Average Algorithm (A&A) -Retrieval Results (ex. Sept. 6)

- Depolarization > $10\% \rightarrow$ retrievals unreliable
- A&A expected to give better performance for absorption retrievals

Comparisons of Column Averages with AERONET

- Effective Radius and Volume Concentration

Comparisons of Column Averages with AERONET - Single Scattering Albedo and Absorption AOD

- A&A performs better for absorption retrievals (as expected)
- Can only compare to Level 1.5 AERONET retrievals (No Level 2 since AOD<0.4)

- CHARMS campaign successfully captured joint Raman and HSRL dataset (July 18-September 30, 2015)
- Aerosol backscatter, extinction profiles (355, 532 nm) produced for entire period – acceptable quality for aerosol retrievals
- Producing accurate aerosol backscatter profiles (1064 nm) is the current rate-limiting analysis step – currently preliminary profiles exist for only Sept. 3-7
- Initial multiwavelength aerosol retrievals performed for Sept. 3-7; column average results appear mostly consistent with AERONET
- Additional retrieval development and evaluations planned

CHARMS demonstrates the potential for (the only) continuous dataset of (unique) vertical profiles of aerosol optical and microphysical properties